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Part V

Interaction with Underdense Plasmas -
Nonlinear Wave Propagation and

Wave-Breaking
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Ionized gases: when is plasma response important?

• Simultaneous field ionization of many atoms produces a plasma
with electron density ne , temperature Te ∼ 1− 10 eV.

• Collective effects important if

ωpτL > 1

• Example: τL = 100 fs, ne = 1017 cm−3 → ωpτL = 1.8

• Typical gas jets: P ∼ 1bar; ne = 1018 − 1019 cm−3

• Underdense: ω2/ω2
p = ne/nc � 1; nc(1µ) = 1021 cm−3

• Exploit plasma effects for: (short-wavelength) radiation; high
electric/magnetic fields; nonlinear refractive properties
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Lorentz-Maxwell equations

∂p

∂t
+ (v · ∇)p = −e(E +

1

c
v × B), (58)

∇·E = 4πe(n0 − ne), (59)

∇×E = −1

c

∂B

∂t
, (60)

∇×B = −4π

c
enev +

1

c

∂E

∂t
, (61)

∇·B = 0, (62)

where p = γmv and γ = (1 + p2/m2c2)1/2.
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Nonlinear plane-wave solutions
Akhiezer & Polovin, 1956

Look for solutions of the form f (ωt − k.r), or f (τ), where
τ = t − i · r/vp, and vp = ω/k is the phase velocity of the wave.
Temporal and spatial differential operators become:

∂

∂t
=

∂

∂τ

∇· = − i

vp

∂

∂τ
·

∇× = − i

vp

∂

∂τ
× ,

where i = k/ | k | is a unit vector in the direction of wave
propagation.
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Simplified Maxwell-fluid equations
– but still nonlinear!

(
i · v

vp
− 1

)
dp

dτ
= e(E +

1

c
v × B), (63)

−i·dE

dτ
= 4πevp(n0 − ne), (64)

B =
c

vp
i × E (65)

−i×dB

dτ
= −4π

c
evpnev +

vp

c

dE

dτ
, (66)

i·dB

dτ
= 0 . (67)

NB: i · B = E · B = 0 – B-field perpendicular to both the wave
vector and E-field.
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Electron density

Now take the dot product of Ampere Eq. (66) with the direction
vector i:

i·
(
−i×dB

dτ

)
= i·

(
−4π

c
evpnev +

vp

c

dE

dτ

)
Eliminate E using Eq. (64) to give an equation for the density:

ne =
vpn0

vp − i · v
. (68)
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Magnetic field

Similarly, the cross-product of the direction vector with Eq. (63)
yields an explicit equation for B, namely:

B = − c

evp
i×dp

dτ
. (69)

Likewise, taking i×(66) and making use of Eq. (65), we obtain an
equation for dB/dτ :

dB

dτ
=

4πeneβp

β2
p − 1

i × v, (70)

where βp = vp/c .
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Transverse wave equation

We can now eliminate B from the previous two equations by
subtracting Eq. (70) from d/dτ(69), leaving a transverse wave
equation

i×d2p

dτ 2
+

4πe2neβ
2
p

β2
p − 1

i × v = 0 . (71)
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Longitudinal wave equation

Longitudinal component of the fluid motion (eliminate B from
i·Eq. (63)):

d

dτ

[(
i · v

vp
− 1

)
i·dp

dτ

]
=

4πe2vpn0i · v

vp − i · v

− 1

vp

d

dτ

[
v·dp

dτ
− (i · v)(i·dp

dτ
)

]
.

(72)
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Simplifications

To render equations (71) and (72) into something more tractable, we
specify the wave vector k to be in the x-direction. Thus, we have
i = x̂ , i · p = px and i × p = (0,−pz , py ).
With these simplifications, and defining u = v/c , Eq. (68) becomes:

ne =
βpn0

βp − ux
. (73)

where βp = vp/c , ux = vx/c .
Typical feature of nonlinear plasma waves: density becomes very large
in regions where the fluid velocity approaches the phase velocity.

121 / 173



Laser
Propagation in
Underdense
Plasmas

Nonlinear Plane
Waves

Linear dispersion
relations

Nonlinear
plasma
oscillations

Wavebreaking

Simplified wave equations – transverse

Taking the y and z components of Eq. (71) and making use of
Eq. (73) and the usual definition ω2

p = 4πe2n0/m, gives us the
coupled transverse wave equations:

d2pz

dτ 2
+

ω2
pβ

2
p

β2
p − 1

βpuz

βp − ux
= 0, (74)

d2py

dτ 2
+

ω2
pβ

2
p

β2
p − 1

βpuy

βp − ux
= 0, (75)

where now py and pz have been normalized to mc , so that p = γu.
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Simplified wave equations – longitudinal

The longitudinal wave equation follows from Eq. (72), which on
applying the same choice of wave vector, simplifies to:

d

dτ

[
(ux − βp)

dpx

dτ
+ uy

dpy

dτ
+ uz

dpz

dτ

]
=

ω2
pβ

2
pux

βp − ux
. (76)

Closed set of equations (74–76) for nonlinear plasma waves of
arbitrary amplitude and fixed phase velocity vp.
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Simplified wave equations – electric and magnetic
fields

Once solved for p, the corresponding electric and magnetic fields
(normalized here to mωpc/e) can be obtained from:

Ex = − 1

βp

d

d(ωpτ)

(
βppx − (1 + p2)

1
2

)
,

Ey = − dpy

d(ωpτ)
, (77)

Ez = − dpz

d(ωpτ)
,

Bx = 0,

By =
1

βp

dpz

d(ωpτ)
, (78)

Bz = − 1

βp

dpy

d(ωpτ)
.

Potential: φ = γ − βppx − 1.
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Low amplitude limit – linear dispersion relation

Transverse equation:

d2py

dτ 2
+

ω2
pβ

2
p

β2
p − 1

βpuy

βp − ux
= 0

Linearize equation:

• px,y ,z � 1

• ux � βp

→ neglect all terms O(u2) and higher

Geometry: EM wave propagates along the x-axis:

EL = (0,Ey , 0), BL = (0, 0,Bz), py = Ay .
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Dispersion relation - transverse waves

Longitudinal and transverse wave components decouple, so that we
recover the linear wave equation

d2uy

dτ 2
+

ω2
pβ

2
puy

β2
p − 1

= 0, (79)

Solution:
uy = uoe

−iωτ ,

provided that

−ω2 +
ω2

pβ
2
p

β2
p − 1

= 0.

Or, since βp = vp/c = ω/kc , can rearrange to get:

ω2 = ω2
p + c2k2. (80)
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Dispersion relation - longitudinal (Langmuir) waves

Linearizing the longitudinal momentum equation (Eq. (76)) yields

−βp
d2px

dτ 2
− ω2

pβpux = 0,

or, since γ ' 1,
d2ux

dτ 2
+ ω2

pux = 0. (81)

Solution: ux = ux0e
−iωτ ,with dispersion relation for longitudinal

waves in the limit Te → 0.

ω2 = ω2
p.

Include finite temperature Te > 0 – Bohm-Gross relation:

ω2 = ω2
p + 3v2

t k2. (82)
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Dispersion relations - graphical

k

2= p
2 + 3vt

2k2

2= p
2 + c2k2

= p

p
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Nonlinear plasma oscillations
Noble, 1984

d

dτ

[
(ux − βp)

dpx

dτ
+ uy

dpy

dτ
+ uz

dpz

dτ

]
=

ω2
pβ

2
pux

βp − ux
.

Set py = pz = 0; ux = u in Eq. (76), which simplifies to

d

dτ

[
(u − βp)

dp

dτ

]
=

ω2
pβ

2
pu

βp − u
.

Writing p = γu = u/
√

1− u2 and rearranging gives a 2nd order
differential equation for the longitudinal velocity alone:

d2

dτ 2
[γ(1− βpu)] =

ω2
pβ

2
pu

βp − u
. (83)
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Solution for longitudinal wave

This equation can be integrated once to give:

1

2
Y 2 = β2

pω
2
p(γm − γ),

where

Y =
d

dτ
[γ(1− βpu)] , γm = (1− u2

m)−1/2,

and um = (v/c)max is the maximum oscillation velocity of the wave.
The waveform can thus be determined from the solution of:

d

dτ
[γ(1− βpu)] = ±

√
2ωpβp(γm − γ)1/2. (84)
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Once u is found, the density and electric field can immediately be
determined using Eq. (73) and Eq. (77a) respectively:

ne(τ) =
βpn0

βp − u(τ)
, (85)

E (τ) =
Y

βp
= ±

√
2(γm − γ(τ))1/2. (86)

An exact analytical solution of Eqs. (84–2) can be obtained in the
limiting case of βp = 1, corresponding to a highly underdense plasma.
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Numerical solutions – linear Langmuir wave

Integrate Eq. (84), Eq. (2) for βp = 1, um = 0.2

0.0 3.1 6.2

p

-0.5

0.0

0.5

1.0

1.5

u,
E

,n
e/

n 0

u
E
ne/n0

NB: electric field and density 90o out of phase
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Numerical solutions – nonlinear Langmuir waves

Parameters: a) βp ' 1 and um = 0.9; b) βp = 0.6, um = 0.55

0 2 4 6 8

p

-2

0

2

4

6

8

u,
E

,n
e/

n 0

a)

0.0 3.1 6.2

p

-2

0

2

4

6

8

u,
E

,n
e/

n 0

b)
u
E
ne/n0

Typical features : i) sawtooth electric field; ii) spiked density; iii)
lengthening of the oscillation period by factor γ.
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Wavebreaking

• Definition: Wave breaks when the fluid velocity exceeds the
phase velocity.

• If this happens, then some of the electron charge sheets may
‘cross’ each other, and the wave will lose its coherence.

• Analogy: surface water waves reaching shore.
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Maximum electric field

Analyse electric field from 1D solution Eq. (2):

E (τ) =
Y

βp
= ±

√
2(γm − γ(τ))1/2.

Extremum occurs for γ = 1, point in the oscillation when the
electrons are momentarily stationary.
Thus at the wave-breaking point γm = γp, we have in physical units:

Emax =
mcωp

e

√
2(γp − 1)1/2. (87)
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Maximum electric field - slow waves

For non-relativistic phase velocities vp � c , we have

γp − 1 = (1− β2
p)
−1/2 ' β2

p/2,

so that

Emax =
mωpvp

e
, (88)

– cold wave-breaking limit (Dawson, 1962).
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Maximum field amplitude - fast waves

For relativistic phase velocities, find

Emax ∼
mωpc

e

Example

me = 9.1× 10−28g

c = 3× 1010cms−1

ωp = 5.6× 104(ne/cm−3)1/2

e = 4.8× 10−10statcoulomb

(89)

Field:

Ep ∼ 4× 108
( ne

1018 cm−3

)1/2

V m−1
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Wavebreaking in warm plasmas
nonrelativistic - Coffey, 1971

Thermal effects act to reduce the maximum attainable wave
amplitude, because:

1 plasma pressure resists the tendency for the density to explode

2 thermal electrons moving in the direction of the wave may be
trapped at a lower wave amplitude than cold particles would be.

First analysed by Coffey (1971) using a so-called ‘waterbag’ model
for the electron distribution function, giving:

eEmax

mωpvp
=

(
1− µ

3
− 8

3
µ1/4 + 2µ1/2

)1/2

, (90)

where µ = 3kBTe/mv2
p .
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Relativistic wavebreaking in warm plasmas
Katsouleas & Mori, 1988

Generalize waterbag model to include relativistic fluid momenta.
Equivalent equation to Eq. (83) for the fluid velocity:

d2

dτ 2
F (u) =

ω2
pβ

2
pu

βp − u
, (91)

where

F (u) =
1− βpu

(1− u2)1/2

[
1 + µβ2

p

1− u2

(β2
p − u2)1/2

]
.
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Relativistic wavebreaking in warm plasmas –
electric field

Maximum electric field in the limit βp ' 1±
√

2ωpβp(γm − γ)1/2:

eEmax

mωpc
= µ−1/4(ln 2γ1/2

p µ1/4)1/2, (92)

valid for

γp �
1

2µ1/2
log 2µ1/4γ1/2

p .
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Maximum electric field in warm plasmas

Wavebreaking amplitude of longitudinal plasma oscillations for
different phase velocities.
Numerical solutions join up with the cold wavebreaking limits (shown
for γp = 10 and γp = 100).

10-6 10-5 10-4 10-3 10-2 10-1 1

= 3kBTe/mvp
2

0

5

10

15
eE

m
ax

/m
pv

p

non-relativistic
p=10

p=100

p=103
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Summary of Lecture 5

• Plasma can support large amplitude waves

• Longitudinal & transverse components generally coupled

• Longitudinal waves: → spiky electron density; sawtooth E-field

• Max electric field determined by wave breaking limit:

Emax ∼
mωpc

e
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