Part V

Interaction with Underdense Plasmas -
Nonlinear Wave Propagation and
Wave-Breaking
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lonized gases: when is plasma response important?

Laser

Propagation in e Simultaneous field ionization of many atoms produces a plasma

Underdense

(Hlezmes with electron density ne, temperature T, ~ 1 — 10 eV.

Collective effects important if

wp >1

Wavebreaking

Example: 7, = 100 fs, n, = 107 cm™3 — wpt. = 1.8
Typical gas jets: P ~ 1bar; n, = 10 — 101 cm—3
Underdense: w?/w? = ne/nc < 1; nc(1p) = 10** cm™3

Exploit plasma effects for: (short-wavelength) radiation; high
electric/magnetic fields; nonlinear refractive properties



Lorentz-Maxwell equations

onlinear Plane 9 :
s 5? +(v-V)p = —e(E+ v xB) (58)
; V-E = 4mwe(ng — ne), (59)

Wavebreaking o

H VXE = ——— i
c ot’ 0
B = —— cot :
V X Cenev+c8t’ oy
V-B = 0, (62)

where p = ymv and v = (1 + p?/m?c?)Y/2.
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Nonlinear plane-wave solutions
Akhiezer & Polovin, 1956

Look for solutions of the form f(wt — k.r), or f(7), where

T=t—1i-r/vp, and v, = w/k is the phase velocity of the wave.

Temporal and spatial differential operators become:

o _ 9
ot or
i 0
v.i_vipﬁ.
i 0
Vx——v—pg

where i = k/ | k | is a unit vector in the direction of wave
propagation.
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Simplified Maxwell-fluid equations

— but still nonlinear!

Waves " e ('va - > % = By B )
—i-% = 4revy(ng — ne), (64)

B = V—pl x E (65)

_.Xg = ——eVyNnev+ %%, (66)

i-% = 0 (67)

NB:i:-B = E - B = 0 — B-field perpendicular to both the wave
vector and E-field.
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Now take the dot product of Ampere Eq. (66) with the direction

vector i:
i iXdB i 47Te nv—i—v‘odE
Aoix— ) =i [ = Zev p U=
dr c Pe c dr

Eliminate E using Eq. (64) to give an equation for the density:

Vpho
= . 68
fle Vp—i-v (68)



Magnetic field

Similarly, the cross-product of the direction vector with Eq. (63)
yields an explicit equation for B, namely:

Nonlinear Plane

Waves
e B —

=——i (69)

X—.
ev, dt

Likewise, taking ix (66) and making use of Eq. (65), we obtain an
equation for dB/dT:

dB  Amen.f3,.

E = WI X V, (70)

where 8, = v, /c.



Transverse wave equation

Nonlinear Plane
o eios We can now eliminate B from the previous two equations by
subtracting Eq. (70) from d/d7(69), leaving a transverse wave
Sl equation
Y 4re?n, B
P “Pixv=0. (71)

Xi N
: d7'2+ ﬂg—l'
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Longitudinal wave equation

Longitudinal component of the fluid motion (eliminate B from
Nonlinear Plane .
Waves |‘Eq. (63))
inear dispersior

(v _j)de] L Aretvemicv

e dr L\ vp “ar Vp—i-v
1d| dp . . dp
VpdT|: dr — (v E) :



Simplifications

To render equations (71) and (72) into something more tractable, we
Nonlinear Plane specify the wave vector k to be in the x-direction. Thus, we have

Waves

Uneardipesion. 1 =X, 1+ p=pxand i X p=(0,—p, py).

relations

Nonlnear With these simplifications, and defining u = v/c, Eq. (68) becomes:
oscillations
Wavebreaking n
ne = M. (73)
ﬁp — Ux

where 8, = v, /c, uy = v, /c.
Typical feature of nonlinear plasma waves: density becomes very large
in regions where the fluid velocity approaches the phase velocity.
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Simplified wave equations — transverse

Taking the y and z components of Eq. (71) and making use of
Nonlnear Plane Eq. (73) and the usual definition w3 = 4we®ng/m, gives us the
neardispesion coupled transverse wave equations:

2 232
Lo, % Gpus Q
dr? (B2 —108, — ux

232
d*py i wolBp  Bpuy - 0
dr? 32 —10, — ux ’

(75)

where now p, and p, have been normalized to mc, so that p = ~yu.



Simplified wave equations — longitudinal

Waves

Nonlinear Plane The longitudinal wave equation follows from Eq. (72), which on

applying the same choice of wave vector, simplifies to:

d dpx dp, dp,|  whBpux
dr (ux 6P)dr Ty Ty B —ux

(76)

Closed set of equations (74—76) for nonlinear plasma waves of
arbitrary amplitude and fixed phase velocity v,,.



Simplified wave equations — electric and magnetic

fields

Once solved for p, the corresponding electric and magnetic fields
(normalized here to mwpc/e) can be obtained from:

Nonlinear Plane
Waves

oscillations
Wavebreaking

1 d
Bp d(wpT)
dpy
d(wpT)’
dp;
d(wpT)’

o

)

1 dp,
Bp d(wpT
1 dp,

)

~—

_Fp d(WpT).

Potential: ¢ = v — Bppx — 1.

(5ppx —(1+ pz)%) ,
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Low amplitude limit — linear dispersion relation

Transverse equation:

d’p, Wgﬁg Bpuy

=0
dr2 +ﬁgflﬂpfux

Linearize equation:
® Pryz <1
° u K By
— neglect all terms O(u?) and higher
Geometry: EM wave propagates along the x-axis:

E. = (0,E,,0), B. = (0,0,B.), p, = A,.
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Dispersion relation - transverse waves

Longitudinal and transverse wave components decouple, so that we
recover the linear wave equation

2 232
d?u, | wpbpuy

o et O 9
Solution: ‘
u, =u e—/u.m"
provided that
2 2
2 wolbp
w* + 5,% —1 = 0.

Or, since 8, = v,/c = w/kc, can rearrange to get:

w? = wl + k2. (80)
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Dispersion relation - longitudinal (Langmuir) waves

Linearizing the longitudinal momentum equation (Eq. (76)) yields

d’px
_/Bp dr2 - wiﬁp“x =0,

Nonlinear Plane
Waves . ~1
Linear dispersion or, since ¥~ 1,

relations d2 u
X

Nonlinear

+ wlu, = 0. 81
(81)

p

dr?

Solution: u, = uyge™'“7,with dispersion relation for longitudinal
waves in the limit T, — 0.

iwT

_ 2
W = wy.
Include finite temperature T, > 0 — Bohm-Gross relation:

w? = w2 + 3vZ k. (82)
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Dispersion relations - graphical

“p




Nonlinear plasma oscillations

Noble, 1984
d dp, dp,|  whBpux
dT[( 5*’) st T T g
‘ Set p, = p, = 0; ux = u in Eq. (76), which simplifies to
Nonlmear
aions d [y )% dp]  wplpu
: dr Prdr ﬂp —u’

Writing p = yu = u/+/1 — u? and rearranging gives a 2nd order
differential equation for the longitudinal velocity alone:

d2 w2/82 u

g2 00— o] = 22 (83)
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Solution for longitudinal wave

This equation can be integrated once to give:

1
§Y2 = 5”;2;(’7% -7
where

d
Y= E [7(1 - BPU)] y Ym = (]. — L151)71/27

and up, = (v/€)max is the maximum oscillation velocity of the wave.
The waveform can thus be determined from the solution of:

e [7(1 — Bpu)] = £V 20,85 (vm — 7). (84)
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Once u is found, the density and electric field can immediately be
determined using Eq. (73) and Eq. (77a) respectively:

_ Bpno
ne(T) - ﬁp _ U(T)’ (85)
E() = 5 =420 - ()" (20)

An exact analytical solution of Egs. (84-2) can be obtained in the
limiting case of 8, = 1, corresponding to a highly underdense plasma.



Numerical solutions — linear Langmuir wave

Integrate Eq. (84), Eq. (2) for 8, =1, un = 0.2

Nonlinear Plan
Nave 15
ersion o
! —E
Nonlinear < /N,
oriny 1.0 /\
oscillations €
Wavebreaking 2
S 05
w
=
0.0
-0.5
0.0 3.1 6.2

LA}pT

NB: electric field and density 90° out of phase



Numerical solutions — nonlinear Langmuir waves

Parameters: a) 8, ~ 1 and v, = 0.9; b) 8, = 0.6, u,, = 0.55

8 8
a b
o @ ol D)
Nonlinear o .
plasma S E
oscillations = 4 S 4
Wavebreaking c &
w2 W o,
= =]
° o S/ ——
2 2
0 2 4 6 8 0.0 31 6.2
“pT wpT

Typical features : i) sawtooth electric field; ii) spiked density; iii)
lengthening of the oscillation period by factor ~.
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Wavebreaking

Definition: Wave breaks when the fluid velocity exceeds the
phase velocity.

If this happens, then some of the electron charge sheets may
‘cross’ each other, and the wave will lose its coherence.

Analogy: surface water waves reaching shore.



Maximum electric field

Analyse electric field from 1D solution Eq. (2):

E(r) = 5 = £V2(m = 1(r)*

N
V
L
.
plasma
Wavebresking Extremum occurs for v = 1, point in the oscillation when the
electrons are momentarily stationary.

Thus at the wave-breaking point 7y, = 7,, we have in physical units:

Emax - mC;"JP \/5(7P - 1)1/2' (87)




Maximum electric field - slow waves

For non-relativistic phase velocities v, < ¢, we have

near Plane

Yo—1=(1-p2)"12~p2)2,

oscillations

Wavebreaking sot h at

Ema,x - %7 (88)

— cold wave-breaking limit (Dawson, 1962).
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Maximum field amplitude - fast waves

For relativistic phase velocities, find

£ mw,C
max e
Example
me = 9.1x10"%g
Wavebreaking c = 3x lolocms,1
wp, = 5.6x10*n./cm™3)/?
e = 4.8 x 10 Pstatcoulomb
(89)
Field:

8 Ne 1/2 1
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Wavebreaking in warm plasmas
nonrelativistic - Coffey, 1971

Thermal effects act to reduce the maximum attainable wave
amplitude, because:

@ plasma pressure resists the tendency for the density to explode

® thermal electrons moving in the direction of the wave may be
trapped at a lower wave amplitude than cold particles would be.

First analysed by Coffey (1971) using a so-called ‘waterbag’ model
for the electron distribution function, giving:

Emax V2
e ax <1 _ E _ g'ul/4 + 2,&1/2) ’ (90)

mwpVp 3

where p = 3kg Te/mvg.



Relativistic wavebreaking in warm plasmas
Katsouleas & Mori, 1988

Generalize waterbag model to include relativistic fluid momenta.
Equivalent equation to Eq. (83) for the fluid velocity:

d2 w2ﬁzu
osclations 2 F(u) = 2P 1
Wavebreaking dr2 (u) ﬁp — U’ (9 )
where
_ ﬂp 2 1 — U2
F(u) (1 )1/ 1+ B, raarak




Relativistic wavebreaking in warm plasmas —
electric field

wo Maximum electric field in the limit 3, ~ 1 4+ v/2w,B,(Ym — 7)Y/%:

€Emax —1/4 1/2,,1/4\1/2
— = In2 92
e M (In 29"/ ) 7%, (92)

\;V;vébreaking
valid for

1 1 1/2
"Yp > W |Og 2[1, /4’)/p/ .
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Maximum electric field in warm plasmas

Wavebreaking amplitude of longitudinal plasma oscillations for
different phase velocities.

Numerical solutions join up with the cold wavebreaking limits (shown
for v, = 10 and ~, = 100).

15 T T T T T
I — — non-relativistic
""" =10
- — =100
o o -10°
> 10} 7p=10
3
1S
X
LL|E S
~
Q) 5 ~ ~ N
==
0 " " "
10°  10°  10*  10®° 10 10" 1

u= 3kBTe/mVp2
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Summary of Lecture 5

Plasma can support large amplitude waves
Longitudinal & transverse components generally coupled

Longitudinal waves: — spiky electron density; sawtooth E-field

Max electric field determined by wave breaking limit:

Emax ~

mwpyC

e
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