Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

Part V

Interaction with Underdense Plasmas -Nonlinear Wave Propagation and Wave-Breaking

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

5 Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves in a Cold Plasma Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

lonized gases: when is plasma response important?

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations

- Simultaneous field ionization of many atoms produces a plasma with electron density n_e , temperature $T_e \sim 1 10$ eV.
- Collective effects important if

$$\omega_p \tau_L > 1$$

- Example: $au_L = 100$ fs, $n_e = 10^{17} \ {
 m cm^{-3}}
 ightarrow \omega_p au_L = 1.8$
- Typical gas jets: $P\sim 1$ bar; $n_e=10^{18}-10^{19}~{
 m cm}^{-3}$
- Underdense: $\omega^2/\omega_p^2=n_e/n_c\ll 1;~n_c(1\mu)=10^{21}~{
 m cm^{-3}}$
- Exploit plasma effects for: (short-wavelength) radiation; high electric/magnetic fields; nonlinear refractive properties

Lorentz-Maxwell equations

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

$$\frac{\partial \mathbf{p}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{p} = -e(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}), \qquad (58)$$

$$\nabla \cdot \mathbf{E} = 4\pi e(n_0 - n_e), \qquad (59)$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}, \tag{60}$$

$$\nabla \times \mathbf{B} = -\frac{4\pi}{c} e n_e \mathbf{v} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}, \qquad (61)$$
$$\nabla \cdot \mathbf{B} = 0, \qquad (62)$$

where $\mathbf{p} = \gamma m \mathbf{v}$ and $\gamma = (1 + p^2/m^2 c^2)^{1/2}$.

Nonlinear plane-wave solutions Akhiezer & Polovin, 1956

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking Look for solutions of the form $f(\omega t - \mathbf{k} \cdot \mathbf{r})$, or $f(\tau)$, where $\tau = t - \mathbf{i} \cdot \mathbf{r}/v_p$, and $v_p = \omega/k$ is the phase velocity of the wave. Temporal and spatial differential operators become:

$$\begin{aligned} \frac{\partial}{\partial t} &= \frac{\partial}{\partial \tau} \\ \nabla \cdot &= -\frac{\mathbf{i}}{v_p} \frac{\partial}{\partial \tau} \cdot \\ \nabla \times &= -\frac{\mathbf{i}}{v_p} \frac{\partial}{\partial \tau} \times , \end{aligned}$$

where $\mathbf{i} = \mathbf{k} / |\mathbf{k}|$ is a unit vector in the direction of wave propagation.

Simplified Maxwell-fluid equations

- but still nonlinear!

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

$$\left(\frac{\mathbf{i}\cdot\mathbf{v}}{v_{p}}-1\right)\frac{d\mathbf{p}}{d\tau} = e(\mathbf{E}+\frac{1}{c}\mathbf{v}\times\mathbf{B}),$$
 (63)

$$\mathbf{i} \cdot \frac{d\mathbf{E}}{d\tau} = 4\pi e v_p (n_0 - n_e), \qquad (64)$$

$$\mathbf{B} = \frac{c}{v_p} \mathbf{i} \times \mathbf{E}$$
 (65)

$$-\mathbf{i} \times \frac{d\mathbf{B}}{d\tau} = -\frac{4\pi}{c} e v_p n_e \mathbf{v} + \frac{v_p}{c} \frac{d\mathbf{E}}{d\tau}, \qquad (66)$$

$$\mathbf{i} \cdot \frac{\partial \mathbf{B}}{\partial \tau} = 0.$$
 (67)

NB: $\mathbf{i} \cdot \mathbf{B} = \mathbf{E} \cdot \mathbf{B} = \mathbf{0} - \mathbf{B}$ -field perpendicular to both the wave vector and E-field.

Electron density

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking Now take the dot product of Ampere Eq. (66) with the direction vector \mathbf{i} :

$$\mathbf{i} \cdot \left(-\mathbf{i} \times \frac{d\mathbf{B}}{d\tau} \right) = \mathbf{i} \cdot \left(-\frac{4\pi}{c} e v_p n_e \mathbf{v} + \frac{v_p}{c} \frac{d\mathbf{E}}{d\tau} \right)$$

Eliminate **E** using Eq. (64) to give an equation for the density:

$$n_e = \frac{v_p n_0}{v_p - \mathbf{i} \cdot \mathbf{v}} . \tag{68}$$

Magnetic field

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking Similarly, the cross-product of the direction vector with Eq. (63) yields an explicit equation for **B**, namely:

$$\mathbf{B} = -\frac{c}{ev_p} \mathbf{i} \times \frac{d\mathbf{p}}{d\tau} \,. \tag{69}$$

Likewise, taking i×(66) and making use of Eq. (65), we obtain an equation for $d\mathbf{B}/d\tau$:

$$\frac{d\mathbf{B}}{d\tau} = \frac{4\pi e n_e \beta_p}{\beta_p^2 - 1} \mathbf{i} \times \mathbf{v},\tag{70}$$

where $\beta_p = v_p/c$.

Transverse wave equation

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking We can now eliminate **B** from the previous two equations by subtracting Eq. (70) from $d/d\tau$ (69), leaving a *transverse wave equation*

$$\mathbf{i} \times \frac{d^2 \mathbf{p}}{d\tau^2} + \frac{4\pi e^2 n_e \beta_p^2}{\beta_p^2 - 1} \mathbf{i} \times \mathbf{v} = 0.$$
 (71)

Longitudinal wave equation

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking Longitudinal component of the fluid motion (eliminate **B** from i·Eq. (63)):

$$\frac{d}{d\tau} \left[\left(\frac{\mathbf{i} \cdot \mathbf{v}}{v_{p}} - 1 \right) \mathbf{i} \cdot \frac{d\mathbf{p}}{d\tau} \right] = \frac{4\pi e^{2} v_{p} n_{0} \mathbf{i} \cdot \mathbf{v}}{v_{p} - \mathbf{i} \cdot \mathbf{v}} - \frac{1}{v_{p}} \frac{d}{d\tau} \left[\mathbf{v} \cdot \frac{d\mathbf{p}}{d\tau} - (\mathbf{i} \cdot \mathbf{v}) (\mathbf{i} \cdot \frac{d\mathbf{p}}{d\tau}) \right].$$
(72)

Simplifications

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations

Nonlinear plasma oscillations

Wavebreaking

To render equations (71) and (72) into something more tractable, we specify the wave vector \mathbf{k} to be in the x-direction. Thus, we have $\mathbf{i} = \hat{x}$, $\mathbf{i} \cdot \mathbf{p} = p_x$ and $\mathbf{i} \times \mathbf{p} = (0, -p_z, p_y)$. With these simplifications, and defining $\mathbf{u} = \mathbf{v}/c$, Eq. (68) becomes:

$$n_e = \frac{\beta_p n_0}{\beta_p - u_x}.$$
(73)

where $\beta_p = v_p/c$, $u_x = v_x/c$. Typical feature of nonlinear plasma waves: density becomes very large in regions where the fluid velocity approaches the phase velocity.

Simplified wave equations - transverse

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking Taking the y and z components of Eq. (71) and making use of Eq. (73) and the usual definition $\omega_p^2 = 4\pi e^2 n_0/m$, gives us the coupled transverse wave equations:

$$\frac{d^2 p_z}{d\tau^2} + \frac{\omega_p^2 \beta_p^2}{\beta_p^2 - 1} \frac{\beta_p u_z}{\beta_p - u_x} = 0, \qquad (74)$$
$$\frac{d^2 p_y}{d\tau^2} + \frac{\omega_p^2 \beta_p^2}{\beta_p^2 - 1} \frac{\beta_p u_y}{\beta_p - u_x} = 0, \qquad (75)$$

where now p_v and p_z have been normalized to mc, so that $\mathbf{p} = \gamma \mathbf{u}$.

Simplified wave equations - longitudinal

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking The longitudinal wave equation follows from Eq. (72), which on applying the same choice of wave vector, simplifies to:

$$\frac{d}{d\tau}\left[(u_x - \beta_p)\frac{dp_x}{d\tau} + u_y\frac{dp_y}{d\tau} + u_z\frac{dp_z}{d\tau}\right] = \frac{\omega_p^2\beta_p^2u_x}{\beta_p - u_x}.$$
 (76)

Closed set of equations (74–76) for nonlinear plasma waves of arbitrary amplitude and fixed phase velocity v_p .

Simplified wave equations – electric and magnetic fields

Once solved for **p**, the corresponding electric and magnetic fields (normalized here to $m\omega_p c/e$) can be obtained from:

$$E_{x} = -\frac{1}{\beta_{p}} \frac{d}{d(\omega_{p}\tau)} \left(\beta_{p}p_{x} - (1+p^{2})^{\frac{1}{2}}\right),$$

$$E_{y} = -\frac{dp_{y}}{d(\omega_{p}\tau)},$$

$$E_{z} = -\frac{dp_{z}}{d(\omega_{p}\tau)},$$

$$B_{x} = 0,$$

$$B_{y} = \frac{1}{\beta_{p}} \frac{dp_{z}}{d(\omega_{p}\tau)},$$

$$B_{z} = -\frac{1}{\beta_{p}} \frac{dp_{y}}{d(\omega_{p}\tau)}.$$
(78)

Potential: $\phi = \gamma - \beta_p p_x - 1$.

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations Nonlinear plasma oscillations Wavebreaking

Low amplitude limit - linear dispersion relation

Transverse equation:

$$\frac{d^2 p_y}{d\tau^2} + \frac{\omega_p^2 \beta_p^2}{\beta_p^2 - 1} \frac{\beta_p u_y}{\beta_p - u_x} = 0$$

Linearize equation:

- $p_{x,y,z} \ll 1$
 - $u_x \ll \beta_p$

 \rightarrow neglect all terms $O(u^2)$ and higher

Geometry: EM wave propagates along the x-axis:

$$E_L = (0, E_y, 0), B_L = (0, 0, B_z), p_y = A_y.$$

Laser Propaga

Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations

Nonlinear plasma oscillations Wavebreaking

Dispersion relation - transverse waves

Longitudinal and transverse wave components *decouple*, so that we recover the linear wave equation

$$\frac{d^2 u_y}{d\tau^2} + \frac{\omega_{\rho}^2 \beta_{\rho}^2 u_y}{\beta_{\rho}^2 - 1} = 0,$$
(79)

Nonlinear Plane Linear dispersion relations

$$u_y = u_o e^{-i\omega\tau},$$

provided that

$$-\omega^2 + \frac{\omega_p^2 \beta_p^2}{\beta_p^2 - 1} = 0.$$

Or, since $\beta_p = v_p/c = \omega/kc$, can rearrange to get:

$$\omega^2 = \omega_p^2 + c^2 k^2. \tag{80}$$

Dispersion relation - longitudinal (Langmuir) waves

Linearizing the longitudinal momentum equation (Eq. (76)) yields

$$-eta_{p}rac{d^{2}p_{x}}{d au^{2}}-\omega_{p}^{2}eta_{p}u_{x}=0,$$

or, since $\gamma\simeq 1$,

 $\frac{d^2 u_x}{d\tau^2} + \omega_p^2 u_x = 0. \tag{81}$

Solution: $u_x = u_{x0}e^{-i\omega\tau}$, with dispersion relation for longitudinal waves in the limit $T_e \rightarrow 0$.

$$\omega^2 = \omega_p^2.$$

Include finite temperature $T_e > 0$ – Bohm-Gross relation:

$$\omega^2 = \omega_p^2 + 3v_t^2 k^2. \tag{82}$$

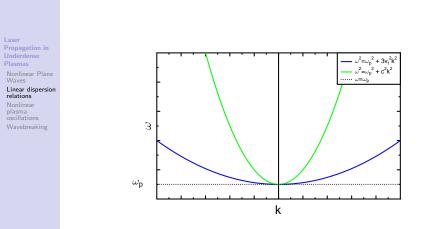
Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations

Nonlinear plasma oscillations Wavebreaking

Dispersion relations - graphical



Nonlinear plasma oscillations Noble, 1984

Laser Propagat

Plasmas

Nonlinear Plane Waves

Linear dispersion relations

Nonlinear plasma oscillations

Wavebreaking

$$\frac{d}{d\tau}\left[\left(u_{x}-\beta_{p}\right)\frac{dp_{x}}{d\tau}+u_{y}\frac{dp_{y}}{d\tau}+u_{z}\frac{dp_{z}}{d\tau}\right]=\frac{\omega_{p}^{2}\beta_{p}^{2}u_{x}}{\beta_{p}-u_{x}}.$$

Set $p_y = p_z = 0$; $u_x = u$ in Eq. (76), which simplifies to

$$\frac{d}{d\tau}\left[\left(u-\beta_{p}\right)\frac{dp}{d\tau}\right]=\frac{\omega_{p}^{2}\beta_{p}^{2}u}{\beta_{p}-u}$$

Writing $p = \gamma u = u/\sqrt{1-u^2}$ and rearranging gives a 2nd order differential equation for the longitudinal velocity alone:

$$\frac{d^2}{d\tau^2} \left[\gamma (1 - \beta_p u) \right] = \frac{\omega_p^2 \beta_p^2 u}{\beta_p - u}.$$
(83)

Solution for longitudinal wave

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves

Linear dispersion relations

Nonlinear plasma oscillations

Wavebreaking

This equation can be integrated once to give:

$$\frac{1}{2}Y^2 = \beta_p^2 \omega_p^2 (\gamma_m - \gamma),$$

where

$$Y = rac{d}{d au} \left[\gamma (1 - eta_p u)
ight], \ \gamma_m = (1 - u_m^2)^{-1/2},$$

and $u_m = (v/c)_{max}$ is the maximum oscillation velocity of the wave. The waveform can thus be determined from the solution of:

$$\frac{d}{d\tau} \left[\gamma (1 - \beta_p u) \right] = \pm \sqrt{2} \omega_p \beta_p (\gamma_m - \gamma)^{1/2}.$$
(84)

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion

Nonlinear plasma oscillations

Wavebreaking

Once u is found, the density and electric field can immediately be determined using Eq. (73) and Eq. (77a) respectively:

$$n_e(\tau) = \frac{\beta_p n_0}{\beta_p - u(\tau)}, \tag{85}$$

$$E(\tau) = \frac{Y}{\beta_{\rho}} = \pm \sqrt{2} (\gamma_m - \gamma(\tau))^{1/2}.$$
(86)

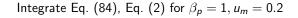
An exact analytical solution of Eqs. (84–2) can be obtained in the limiting case of $\beta_p = 1$, corresponding to a highly underdense plasma.

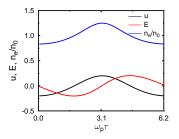
Numerical solutions – linear Langmuir wave

Linear dispersion relations

Nonlinear plasma oscillations

Wavebreaking





NB: electric field and density 90° out of phase

Numerical solutions – nonlinear Langmuir waves

Parameters: a)
$$eta_{m{
ho}}\simeq 1$$
 and $u_m=$ 0.9; b) $eta_{m{
ho}}=$ 0.6, $u_m=$ 0.55

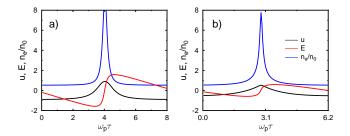
Propagation in Underdense Plasmas Nonlinear Plane

Waves

Linear dispersion relations

Nonlinear plasma oscillations

Wavebreaking



Typical features : i) sawtooth electric field; ii) spiked density; iii) *lengthening* of the oscillation period by factor γ .

Wavebreaking

- Laser Propagation i Underdense Plasmas
- Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

- Definition: Wave breaks when the fluid velocity exceeds the phase velocity.
- If this happens, then some of the electron charge sheets may 'cross' each other, and the wave will lose its coherence.
- Analogy: surface water waves reaching shore.

Maximum electric field

Laser

Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

Analyse electric field from 1D solution Eq. (2):

$$E(\tau) = \frac{\gamma}{\beta_p} = \pm \sqrt{2} (\gamma_m - \gamma(\tau))^{1/2}.$$

Extremum occurs for $\gamma = 1$, point in the oscillation when the electrons are momentarily stationary.

Thus at the wave-breaking point $\gamma_m = \gamma_p$, we have in physical units:

$$E_{\rm max} = \frac{mc\omega_p}{e} \sqrt{2}(\gamma_p - 1)^{1/2}.$$
 (87)

Maximum electric field - slow waves

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

For *non-relativistic* phase velocities $v_p \ll c$, we have

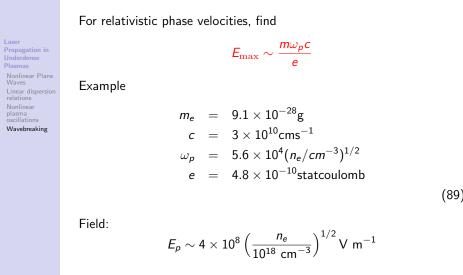
$$\gamma_p - 1 = (1 - \beta_p^2)^{-1/2} \simeq \beta_p^2/2,$$

so that

$$E_{\max} = \frac{m\omega_{\rho}v_{\rho}}{e},\tag{88}$$

- cold wave-breaking limit (Dawson, 1962).

Maximum field amplitude - fast waves



Wavebreaking in warm plasmas

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

Thermal effects act to reduce the maximum attainable wave amplitude, because:

1 plasma pressure resists the tendency for the density to explode

thermal electrons moving in the direction of the wave may be trapped at a lower wave amplitude than cold particles would be.

First analysed by Coffey (1971) using a so-called 'waterbag' model for the electron distribution function, giving:

$$\frac{eE_{\max}}{m\omega_{\rho}v_{\rho}} = \left(1 - \frac{\mu}{3} - \frac{8}{3}\mu^{1/4} + 2\mu^{1/2}\right)^{1/2},\tag{90}$$

where $\mu = 3k_B T_e / mv_p^2$.

Relativistic wavebreaking in warm plasmas Katsouleas & Mori, 1988

Laser Propagation i Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

Generalize waterbag model to include relativistic fluid momenta. Equivalent equation to Eq. (83) for the fluid velocity:

$$\frac{d^2}{d\tau^2}F(u) = \frac{\omega_p^2 \beta_p^2 u}{\beta_p - u},\tag{91}$$

where

$${\cal F}(u) = rac{1-eta_{
ho} u}{(1-u^2)^{1/2}} \left[1+\mueta_{
ho}^2 rac{1-u^2}{(eta_{
ho}^2-u^2)^{1/2}}
ight]$$

Relativistic wavebreaking in warm plasmas – electric field

Laser Propagation in Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

Maximum electric field in the limit $\beta_p \simeq 1 \pm \sqrt{2}\omega_p\beta_p(\gamma_m - \gamma)^{1/2}$:

 $\gamma_p \gg \frac{1}{2\mu^{1/2}} \log 2\mu^{1/4} \gamma_p^{1/2}.$

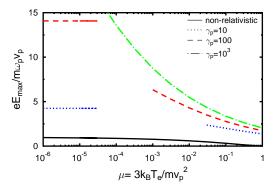
$$\frac{eE_{\max}}{m\omega_p c} = \mu^{-1/4} (\ln 2\gamma_p^{1/2} \mu^{1/4})^{1/2}, \qquad (92)$$

valid for

Maximum electric field in warm plasmas

Wavebreaking amplitude of longitudinal plasma oscillations for different phase velocities.

Numerical solutions join up with the cold wavebreaking limits (shown for $\gamma_p = 10$ and $\gamma_p = 100$).



Laser

Propagation i Underdense Plasmas

Nonlinear Plane Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

Summary of Lecture 5

- Laser Propagation in Underdense Plasmas
- Waves Linear dispersion relations Nonlinear plasma oscillations

Wavebreaking

- Plasma can support large amplitude waves
- Longitudinal & transverse components generally coupled
- Longitudinal waves: \rightarrow spiky electron density; sawtooth E-field
- Max electric field determined by wave breaking limit:

$$E_{
m max} \sim rac{m\omega_p c}{e}$$