Part IV

Interaction with Single Electrons - Focussed
Beams and Thomson Scattering



Laser focus

Experiments

Recemtion @ Interaction with Single Electrons, Part 2

Schemes . .

T Ejection of electron from focused laser beam
Scattering . . . .o

Comton Experimental determination of emission angle
Scattering

Vacuum Acceleration Schemes
Relativistic Thomson Scattering
Nonlinear Compton Scattering

82 /115



Ejection of free electrons from focused laser
beam

Laser focus
Experiments

e Ponderomotive force
f;; X VJ_IL

e But: f, = f,(r[t], p[t])
— no analytical solution

e Can still determine final
energy AU




Laser focus: ejection angle (1)

Laser focus Final kinetic energy of the electron:

Experiments

AU = (y - 1)mc>.

This energy comes from EM field via multiphoton momentum
transfer. Parallel momentum is conserved, so:
nhw AU

— k=" 22 ()~ 1)me.
pp=n c a (v —=1)mc
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Laser focus: ejection angle (2)

Recall the relationship between p; and p, from Eq. (26) for a =1
(lab frame):

Emission angle is therefore given by:

2
tang = PX = — (43)
P V-t
cosf = L_l
v+1

= one-to-one relationship between exit angle and energy!

or



Experimental verification of relativistic drift

motion
Moore, Meyerhofer et al. (1995)
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Recap: experimental appearance intensities

Laser focus 104 - T .
Experiments E
Vacuum L
Acceleration
Schemes .
Thomson 0
Scattering H
Compton s
Scattering £ E
; 2
o 104 |
3
E
=
g 4
g
g
* ek 4 9 Eion Z—Z W —2
lapp >~ 4 % 10 V2 cm
e
1 i
1014 1016 1017

Intensity (W/cm?)
FIG. 1. Approximate number of argon ions detected as a
function of peak laser intensity. Similar graphs have been con-
structed for He, Ne, Kr, and Xe.



Appearance intensities from barrier suppression
model

e Example: Ne, Z=10, 1522522p6
lon Eion (8V)  happ (Wem=2) 20,4 (keV) 6 (°)

Laser focus

Experiments Ne3t 971 4.0 x 1016 7.4 85
Ne®t  157.9 6.7 x 106 12.6 83.7
Ne’* 207.3 1.5 x 1017 47 78

e Ponderomotive potential

2 -2
agmc

Dpond = =93 x 10" ¥ yppA,

e Emission angle from Eq. (43):

2mc? 1/2
0=tan ' —F—
tan (Ekin /keV)
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Angle-dependent electron spectra

Angle from beam axis (°)
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Experiments

Ejection from focus in relativistic regime
Malka, Lefebvre & Miquel (1997)

e Limeil experiment (1997):
L =05—1x10" Wem™2, A =1 um, o, = 10 um, 7, = 500fs

Target
Creatlo e Chamber

center

(t)
6 mm
g

Acceleratlon
beam
(t+At) Electron
spectrometer

o keV electrons drift into main chamber & get accelerated by main
pulse



Spectrometer measurements
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FIG. 2. Electron measurements recorded by the spectrometer
at# = 39and ¢ = 46°fora = 3 and a = 2. The laser polar-
ization is horizontal. The maximum energy is Wy,, = 0.9 £
0.1 MeV (a = 3, 6 = 39°, diamonds), 0.63 = 0.05 MeV (a =
3, # = 46°, circles), and 0.63 £ 0.05 MeV (a = 2, § = 46°,
squares).
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Generalised scattering formula

For electrons with initial velocity 5o = vp/c:

where y9 =

tanf =

(1-@3})V2.

¢2 (£ —1)/(1+ fo)

Y= 70(1 - ﬁo)

)

(44)
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Spectrometer ‘simulation’ — polar plot
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Malka et al.'s analysis

Test-particle model with:
E = 2 F o ;)/2 f(¢)
RO R CO A
B, = E,

where o(x) = oo(1 + x*/R?), RL = w03 /AL, ¢ = wt — kx



Malka et al.'s analysis

Test-particle model with:

Laser focus
Experiments

2
Vacuum oo 7y
= iz
o B, = E,
Scattering

where o(x) = oo(1 + x*/R?), RL = w03 /AL, ¢ = wt — kx
Flawed because fields don't satisfy Maxwell equations!!

V-B#£0
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Corrected fields

Any focused laser pulse described by A, = Ag(r), must also have

94y

B, = e

This gives force v, B, in the z-direction of the same order as f,

= Get electron rings ejected in forward direction | MOVIE

The net result is that a symmetric, tightly focused laser  will
tend to eject rings of electrons in the forward direction.
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The net result is that a symmetric, tightly focused laser will tend to eject rings of electrons in the forward direction.
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Laser Acceleration Schemes

Lawson-Woodward (LW) theorem: an isolated, relativistic electron
cannot gain energy by interacting with an EM field.
Conditions:

@ the laser field is in vacuum, with no interfering walls or
boundaries,

@® the electron is highly relativistic along the acceleration path,
© no static electric or magnetic fields are present,
@ the interaction region is infinite,

©® ponderomotive forces are neglected.
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Proposed vacuum schemes

@ Tightly focused, stationary beam with /A\?> 102 Wem™2m?-
electron ‘capture’ (Ho et al., 2000)

® Tailored laser focus: ponderomotive ‘well’

@® Sub-cycle acceleration: 1/2-cycle laser pulse; DC axial field
©® Vacuum beat-wave - optical mixing (Esarey, 1995)

@ Magnetic fields (Katsouleas & Dawson, 1983)
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Nonlinear Thomson Scattering

Laser focus

Experiments

Vacuum

Schemes o Accelerated charges act as radiation sources — e.g. synchrotron.
Thomson

(Sfjffj"[‘"yg e Similarly, electrons in laser field will re-emit radiation at

Scattering

harmonics of laser frequency.

= Nonlinear, or relativistic Thomson scattering
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Classical Thomson Scattering

Power radiated by electron oscillating with velocity in EM field with

Y- normalized pump strength ag:
Experiments
Vacuum
L 2 2
Acceleratior e“wnC
Scher f— 0 2
Thomson PT - 3 - (45)
Scattering
ot

Dividing by the Poynting vector for the incoming light, S = cEZ /8,
yields the Thomson scattering cross-section:

_Pr_87m,

oT 5 = 3re, (46)

where r, = €2/mc? is the classical electron radius.
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Relativistic treatment

Liénard-Wiechert potentials for charge in relativistic motion:

P(x,t) = I:(]-;-n)R:|ret7
A(x, t)

(47)

(48)

where 3 = v/c, nis a unit vector from the charge in the direction of

observation, and [],et indicates retarded time t' =t — R(t')/c.
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General radiation field

Radiation (electric) field seen at point P due to the charge at x(t):

_5] +e[nx{(n—ﬂ)xﬂ'1 ’ (49)

n
E(x,t)=e|5—5
(x.t)=e {’y2/€R2 c k3R

where k = dt’/dt =1 — B.n and 3 = dB/dt is the acceleration.



Radiated power

Leser focus Energy flux or Poynting vector at the observation point P:

Acceleratior
Scher

S Cc
Thomson -
Scattering 47T

C
ExB=— | EJ?
47r| |n,

Radiated power per unit solid angle:

dP(t) _ C 2
) = RA(Sn) = SR E (50)
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Intensity distribution

Assume that the field can be expressed as a Fourier integral:

/.

E(t)

e “E(w)dw.

Substituting this into Eq. (49), and applying Parseval’s theorem for

power spectra to Eq. (50) leads to an intensity distribution:

d?l e?w?

dwdQ ~ 4r2c

/

oo

o0

N (nxﬁ)eiw(t—n.r/c)dt

2

(51)
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Special case: periodic motion
Sarachik & Schappert (1970)

Radiated power P per solid angle € can be decomposed into
multiples m of the fundamental frequency wg, whereby:

dPn, wf% d?l,
dQ 27 dwdQ
2 4.2 2

€ wgm

2/ imwo(t—N.¥/C)
- Y Imwo(t—1I1.
o)’ /0 nx(n X v)e dt| . (52)
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Radiation from relativistic quiver motion

Apply formula directly to the periodic particle orbits Eq. (35) in the
e (e average rest frame to get power spectrum:

Experiments
Vacuum
\ccelera

dPT  2m?A(w3) [cot? g

%th:—r‘ fen 2 . /2 3
= J 2 0 J 2 0 ’
g dQr V2 27 2 (vV2qg msin0) + J' (v2g msin 0g)
o (53)
where 2 ezw’z?ag
A pr—
() 8mc ’

Jm is the usual Bessel function and J, its derivative; O is the angle
between the n and the laser wave-vector in the average rest frame;

q= ao/’Yo. WR = wo/’Yo-



Observed radiation spectrum in lab frame

Lorentz-transform result back to the lab frame to get the observed
power spectrum.

dPm dPg
e —b = D(a0,01) L, (54)
Expr Q. d2r
Accelera N
where 4
Scattering
D(ao, 0;) = —— 90—
Scattering ’ a2 26, 4

S0 o YL
(1 + 3 sin 2)

The spectrum also no longer consists of integer harmonics of wg, but
at shifted frequencies given by:

muwo

VPR RAS
(1+ % gin? 2)

WL = (55)



Strongly relativistic limit: C-polarized light

Extreme intensity limit: (ao >> 1), radiation is predominantly forward
Laser focus

ERRp—— and confined to an angle

Vacuum

A\cceleration

Themmaon 0, = V8/ap

Scattering

Compton ) A ) .
S from the axis of propagation. Headlamping effect: 0, = 0, orbit

pitch-angle for C-light.
Also get harmonic cutoff at:

M = M. = 3(a3/2)%2.
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Linearly polarized light

Expand the angular radiation pattern Eq. (52) for ag < 1. The total
scattered power in the first three harmonics — integrated over solid

Laser focus

Experiments angle in the laboratory frame — has the following leading terms:
Acceleration
Schemes
omson 87r
;—:attering Pl ~ WO
E(mmhm 3
Scattering
147 ,
P2 ~ Wo 5 dg;
6217
Py ~ W 56
3 0 ~A~1 294 07 ( )

where Wy = e2w?2c/87 is a characteristic scattered power per
electron for a given laser frequency wy.
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Seeing figures-of-eight

Chen, Umstadter et al.(Nature, 1998)

Thomson
Scattering

Compton
Scattering

Figure: Angular measurements (points) of a) 2nd harmonic light and b)

3rd harmonic light generated by relativistic electrons in a high intensity
laser focus.
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Nonlinear Compton scattering

Consider recoil energy and momentum acquired by the electron.

hw

Figure: Geometry for multiphoton-electron scattering event in which
electron is initially at rest.

e Classical Thomson scattering: hw/mc? < 1 — ignore recoil
effects.

o Compton scattering: hw/mc? ~ 1 = gain in momentum for the

electron; loss of photon energy

112
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Single-photon scattering

For single-photon scattering, the energy change AE is easily found
by momentum and energy conservation:

AF — T (1 — cos6)
1+ 29 (1 — cosh)

mc2

hw, (57)

which corresponds to the usual wavelength shift of the scattered

photon,
AN =X — X =)X(1—cosb),

where \. = h/mc = 0.0243A is the Compton wavelength.



Multiphoton scattering

For relativistic electrons, the photon frequency gets upshifted by ~ in
the electron rest frame.

Relevant parameter:
ynhw/mc?.

Laser focus
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Laser intensity for pair-production
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Observation of multiphoton Compton scattering
Bula et al., 1996

o Experiment at the Stanford Linear Accelerator Center (SLAC):
where a 47 GeV (v ~ 92000) ‘collided’ with a TW, 1 ps, 1 pm
laser pulse.

e Nd:glass laser photons have hw ~ 1 eV, giving yhw/mc? ~ 1.
— Significant multiple scattering at 10'® Wem™2, which scales as
P, ~ a3".

e Broad agreement with QED theory.
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