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Part IV

Interaction with Single Electrons - Focussed
Beams and Thomson Scattering
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4 Interaction with Single Electrons, Part 2
Ejection of electron from focused laser beam
Experimental determination of emission angle
Vacuum Acceleration Schemes
Relativistic Thomson Scattering
Nonlinear Compton Scattering
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Ejection of free electrons from focused laser
beam

θ p

p

⊥

||

• Ponderomotive force
fp ∝ ∇⊥IL

• But: fp = fp(r [t], p[t])
→ no analytical solution

• Can still determine final
energy ∆U
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Laser focus: ejection angle (1)

Final kinetic energy of the electron:

∆U = (γ − 1)mc2. (41)

This energy comes from EM field via multiphoton momentum
transfer. Parallel momentum is conserved, so:

p‖ = n~k =
n~ω

c
=

∆U

c
= (γ − 1)mc . (42)
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Laser focus: ejection angle (2)

Recall the relationship between p‖ and p⊥ from Eq. (26) for α = 1
(lab frame):

p‖ =
p2
⊥

2mc
,

Emission angle is therefore given by:

tan θ =
p⊥
p‖

=

√
2

γ − 1
, (43)

or

cos θ =

√
γ − 1

γ + 1
.

⇒ one-to-one relationship between exit angle and energy!
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Experimental verification of relativistic drift
motion
Moore, Meyerhofer et al. (1995)
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Recap: experimental appearance intensities

Iapp ' 4× 109

(
Eion

eV

)4

Z−2 Wcm−2
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Appearance intensities from barrier suppression
model

• Example: Ne, Z=10, 1s22s22p6

Ion Eion (eV) Iapp ( Wcm−2) 2Φpond (keV) θ (o)

Ne3+ 97.1 4.0× 1016 7.4 85
Ne5+ 157.9 6.7× 1016 12.6 83.7
Ne7+ 207.3 1.5× 1017 47 78

• Ponderomotive potential

Φpond =
a2
0mc2

4
= 9.3× 10−14Iappλ2

µ

• Emission angle from Eq. (43):

θ = tan−1

(
2mc2

Ekin/keV

)1/2
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Angle-dependent electron spectra
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Ejection from focus in relativistic regime
Malka, Lefebvre & Miquel (1997)

• Limeil experiment (1997):
IL = 0.5− 1× 1019 Wcm−2, λ = 1 µm, σL = 10 µm, τL = 500fs

• keV electrons drift into main chamber & get accelerated by main
pulse
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Spectrometer measurements
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Generalised scattering formula

For electrons with initial velocity β0 = v0/c :

tan θ =

√
2( γ

γ0
− 1)/(1 + β0)

γ − γ0(1− β0)
, (44)

where γ0 = (1− β2
0)

1/2.
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Spectrometer ‘simulation’ – polar plot
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Malka et al.’s analysis

Test-particle model with:

Ey =
σ0

σ(x)
E0 exp

{
−y2

σ(x)2

}
f (φ),

Bz = Ey ,

where σ(x) = σ0(1 + x2/R2
L), RL = πσ2

0/λL, φ = ωt − kx

Flawed because fields don’t satisfy Maxwell equations!!

∇ · B 6= 0
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Malka et al.’s analysis

Test-particle model with:

Ey =
σ0

σ(x)
E0 exp

{
−y2

σ(x)2

}
f (φ),

Bz = Ey ,

where σ(x) = σ0(1 + x2/R2
L), RL = πσ2

0/λL, φ = ωt − kx
Flawed because fields don’t satisfy Maxwell equations!!

∇ · B 6= 0
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Corrected fields

Any focused laser pulse described by Ay = A0(r), must also have

Bx =
∂Ay

∂z
.

Ey =
σ0

σ(x)
E0 exp

{
−y2

σ(x)2

}
,

Bz = Ey ,

Bx =

This gives force vyBx in the z-direction of the same order as fy

⇒ Get electron rings ejected in forward direction MOVIE
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The net result is that a symmetric, tightly focused laser will tend to eject rings of electrons in the forward direction.
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Laser Acceleration Schemes

Lawson-Woodward (LW) theorem: an isolated, relativistic electron
cannot gain energy by interacting with an EM field.
Conditions:

1 the laser field is in vacuum, with no interfering walls or
boundaries,

2 the electron is highly relativistic along the acceleration path,

3 no static electric or magnetic fields are present,

4 the interaction region is infinite,

5 ponderomotive forces are neglected.
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Proposed vacuum schemes

1 Tightly focused, stationary beam with Iλ2> 1021 Wcm−2µm2-
electron ‘capture’ (Ho et al., 2000)

2 Tailored laser focus: ponderomotive ‘well’

3 Sub-cycle acceleration: 1/2-cycle laser pulse; DC axial field

4 Vacuum beat-wave - optical mixing (Esarey, 1995)

5 Magnetic fields (Katsouleas & Dawson, 1983)
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Nonlinear Thomson Scattering

• Accelerated charges act as radiation sources – e.g. synchrotron.

• Similarly, electrons in laser field will re-emit radiation at
harmonics of laser frequency.

⇒ Nonlinear, or relativistic Thomson scattering
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Classical Thomson Scattering

Power radiated by electron oscillating with velocity in EM field with
normalized pump strength a0:

PT =
e2ω2

0c

3
a2
0. (45)

Dividing by the Poynting vector for the incoming light, S = cE 2
0 /8π,

yields the Thomson scattering cross-section:

σT =
PT

S
=

8π

3
r2
e , (46)

where re = e2/mc2 is the classical electron radius.
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Relativistic treatment

R
r

(t )

P

O

v(t )

−

n

R(t)

x(t )

e

Liénard-Wiechert potentials for charge in relativistic motion:

φ(x, t) =

[
e

(1− β.n)R

]
ret

, (47)

A(x, t) =

[
eβ

(1− β.n)R

]
ret

, (48)

where β = v/c , n is a unit vector from the charge in the direction of
observation, and [ ]ret indicates retarded time t ′ = t − R(t ′)/c .
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General radiation field

Radiation (electric) field seen at point P due to the charge at x(t):

E(x, t) = e

[
n− β

γ2κR2

]
ret

+
e

c

[
n×{(n− β)×β̇

κ3R

]
ret

, (49)

where κ = dt ′/dt = 1− β.n and β̇ = dβ/dt is the acceleration.
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Radiated power

Energy flux or Poynting vector at the observation point P:

S =
c

4π
E×B =

c

4π
| E |2 n,

Radiated power per unit solid angle:

dP(t)

dΩ
= R2(S.n) =

c

4π
R2 | E |2 . (50)
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Intensity distribution

Assume that the field can be expressed as a Fourier integral:

E(t) =

∫ ∞

−∞
e−iωtE(ω)dω.

Substituting this into Eq. (49), and applying Parseval’s theorem for
power spectra to Eq. (50) leads to an intensity distribution:

d2I

dωdΩ
=

e2ω2

4π2c

∣∣∣∣∫ ∞

−∞
n×(n×β)e iω(t−n.r/c)dt

∣∣∣∣2 . (51)
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Geometry

y

x,

z

n

kα
θ

β

φ
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Special case: periodic motion
Sarachik & Schappert (1970)

Radiated power P per solid angle Ω can be decomposed into
multiples m of the fundamental frequency ω0, whereby:

dPm

dΩ
=

ω2
0

2π

d2Im
dωdΩ

=
e2ω4

0m
2

(2πc)3

∣∣∣∣∣
∫ 2π/ω0

0

n×(n × v)e imω0(t−n.r/c)dt

∣∣∣∣∣
2

. (52)
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Radiation from relativistic quiver motion

Apply formula directly to the periodic particle orbits Eq. (35) in the
average rest frame to get power spectrum:

dPm
R

dΩR
=

2m2A(ω2
R)

γ2
0

[
cot2 θR

2q2
J2
m(
√

2q m sin θ) + J ′
2
m(
√

2q m sin θR)

]
,

(53)
where

A(ω2
R) =

e2ω2
Ra2

0

8πc
,

Jm is the usual Bessel function and J ′m its derivative; θR is the angle
between the n and the laser wave-vector in the average rest frame;
q = a0/γ0, ωR = ω0/γ0.
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Observed radiation spectrum in lab frame

Lorentz-transform result back to the lab frame to get the observed
power spectrum.

dPm
L

dΩL
= D(a0, θL)

dPm
R

dΩR
, (54)

where

D(a0, θL) =
γ4

0(
1 +

a2
0

2 sin2 θL

2

)4 .

The spectrum also no longer consists of integer harmonics of ω0, but
at shifted frequencies given by:

ωm
L =

mω0(
1 +

a2
0

2 sin2 θL

2

) . (55)
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Strongly relativistic limit: C-polarized light

Extreme intensity limit: (a0 � 1), radiation is predominantly forward
and confined to an angle

θL =
√

8/a0

from the axis of propagation. Headlamping effect: θL = θp orbit
pitch-angle for C-light.
Also get harmonic cutoff at:

M = mmax = 3(a2
0/2)3/2.
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Linearly polarized light

Expand the angular radiation pattern Eq. (52) for a0 < 1. The total
scattered power in the first three harmonics — integrated over solid
angle in the laboratory frame — has the following leading terms:

P1 ' W0
8π

3
a2
0,

P2 ' W0
14π

5
a4
0,

P3 ' W0
621π

224
a6
0, (56)

where W0 = e2ω2
0c/8π is a characteristic scattered power per

electron for a given laser frequency ω0.
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Seeing figures-of-eight
Chen, Umstadter et al.(Nature, 1998)

Figure: Angular measurements (points) of a) 2nd harmonic light and b)
3rd harmonic light generated by relativistic electrons in a high intensity
laser focus.
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Nonlinear Compton scattering

Consider recoil energy and momentum acquired by the electron.

h

e−

hω

hω

hω ω

p

φ

θ

Figure: Geometry for multiphoton-electron scattering event in which
electron is initially at rest.

• Classical Thomson scattering: ~ω/mc2 � 1 – ignore recoil
effects.

• Compton scattering: ~ω/mc2 ∼ 1 ⇒ gain in momentum for the
electron; loss of photon energy
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Single-photon scattering

For single-photon scattering, the energy change ∆E is easily found
by momentum and energy conservation:

∆E =
~ω
mc2 (1− cos θ)

1 + ~ω
mc2 (1− cos θ)

~ω, (57)

which corresponds to the usual wavelength shift of the scattered
photon,

∆λ = λ′ − λ = λc(1− cos θ),

where λc = h/mc = 0.0243Å is the Compton wavelength.
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Multiphoton scattering

For relativistic electrons, the photon frequency gets upshifted by γ in
the electron rest frame.
Relevant parameter:

γn~ω/mc2.

5 1 2 5 10 2 5 102
2 5 103

2 5 104
2 5 105

Beam energy U/MeV

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

I/W
cm

-2

Laser intensity for pair-production
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Observation of multiphoton Compton scattering
Bula et al., 1996

• Experiment at the Stanford Linear Accelerator Center (SLAC):
where a 47 GeV (γ ' 92000) ‘collided’ with a TW, 1 ps, 1 µm
laser pulse.

• Nd:glass laser photons have ~ω ' 1 eV, giving γ~ω/mc2 ∼ 1.

→ Significant multiple scattering at 1018 Wcm−2, which scales as
Pn ∼ a2n

0 .

• Broad agreement with QED theory.
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