Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering

Part IV

Interaction with Single Electrons - Focussed Beams and Thomson Scattering

 Interaction with Single Electrons Part 2

Laser focus Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering

4 Interaction with Single Electrons, Part 2

Ejection of electron from focused laser beam Experimental determination of emission angle Vacuum Acceleration Schemes Relativistic Thomson Scattering Nonlinear Compton Scattering

Ejection of free electrons from focused laser beam

Interaction with Single Electrons, Part 2

Laser focus

Experiments

- Vacuum Acceleration Schemes
- Thomson Scattering Compton Scattering

- Ponderomotive force $f_{p} \propto \nabla_{\perp} I_{L}$
- But: f_p = f_p(r[t], p[t])
 → no analytical solution
- Can still determine final energy ΔU

・ロト ・回ト ・ヨト ・ヨト

-

Laser focus: ejection angle (1)

Interaction with Single Electrons Part 2

Laser focus

Experiments Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering Final kinetic energy of the electron:

$$\Delta U = (\gamma - 1)mc^2. \tag{41}$$

<ロ> (四) (四) (注) (注) (三)

84 / 115

This energy comes from EM field via multiphoton momentum transfer. Parallel momentum is conserved, so:

$$p_{\parallel} = n\hbar k = \frac{n\hbar\omega}{c} = \frac{\Delta U}{c} = (\gamma - 1)mc.$$
 (42)

Laser focus: ejection angle (2)

Recall the relationship between p_{\parallel} and p_{\perp} from Eq. (26) for $\alpha = 1$ (lab frame):

$$p_{\parallel}=rac{p_{\perp}^2}{2mc},$$

Emission angle is therefore given by:

$$\tan \theta = \frac{p_{\perp}}{p_{\parallel}} = \sqrt{\frac{2}{\gamma - 1}},\tag{43}$$

85 / 115

or

$$\cos heta = \sqrt{rac{\gamma-1}{\gamma+1}}.$$

 \Rightarrow one-to-one relationship between exit angle and energy!

Single Electrons, Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering

Experimental verification of relativistic drift motion Moore, Meyerhofer *et al.* (1995)

Recap: experimental appearance intensities

Laser focus

Experiments

Vacuum Acceleration Schemes

Compton Scattering

$$I_{
m app}\simeq 4 imes 10^9 \left(rac{E_{
m ion}}{
m eV}
ight)^4 Z^{-2}~~{
m Wcm^{-2}}$$

FIG. 1. Approximate number of argon ions detected as a function of peak laser intensity. Similar graphs have been constructed for He, Ne, Kr, and Xe.

Appearance intensities from barrier suppression model

Intera	ction	with
Single	Elec	trons,
Part 2	2	

Laser focus

Experiments

Vacuum Acceleratior Schemes

Thomson Scattering Compton Scattering • Example: Ne, Z=10, 1s²2s²2p⁶

lon	$E_{\rm ion}$ (eV)	$I_{ m app}$ (Wcm $^{-2}$)	$2\Phi_{ m pond}$ (keV)	θ (°)
NI 31	07.4	4.0 4.016		05
Ne ³⁺	97.1	$4.0 imes 10^{10}$	7.4	85
Ne^{5+}	157.9	$6.7 imes10^{16}$	12.6	83.7
Ne^{7+}	207.3	$1.5 imes10^{17}$	47	78

• Ponderomotive potential

$$\Phi_{\rm pond} = \frac{a_0^2 m c^2}{4} = 9.3 \times 10^{-14} I_{\rm app} \lambda_{\mu}^2$$

• Emission angle from Eq. (43):

$$heta = tan^{-1} \left(rac{2mc^2}{E_{
m kin}/
m keV}
ight)^{1/2}$$

88 / 115

Angle-dependent electron spectra

Interaction with Single Electrons, Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 89 / 115)

Ejection from focus in relativistic regime Malka, Lefebvre & Miquel (1997)

• Limeil experiment (1997): $I_L = 0.5 - 1 \times 10^{19} \text{ Wcm}^{-2}$, $\lambda = 1 \ \mu\text{m}$, $\sigma_L = 10 \ \mu\text{m}$, $\tau_L = 500 \text{fs}$

 keV electrons drift into main chamber & get accelerated by main pulse

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleratior Schemes

Thomson Scattering Compton

Spectrometer measurements

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering

Generalised scattering formula

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering

For electrons with initial velocity
$$\beta_0 = v_0/c$$
:

$$\tan \theta = \frac{\sqrt{2(\frac{\gamma}{\gamma_0} - 1)/(1 + \beta_0)}}{\gamma - \gamma_0(1 - \beta_0)},\tag{44}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

92/115

where $\gamma_0 = (1 - \beta_0^2)^{1/2}$.

Spectrometer 'simulation' – polar plot

<ロト<部ト<単ト<単ト<単ト<単ト<単ト<単ト<単のQで 93/115

Malka et al.'s analysis

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering Test-particle model with:

$$E_y = \frac{\sigma_0}{\sigma(x)} E_0 \exp\left\{\frac{-y^2}{\sigma(x)^2}\right\} f(\phi),$$

$$B_z = E_y,$$

where $\sigma(x) = \sigma_0(1 + x^2/R_L^2)$, $R_L = \pi \sigma_0^2/\lambda_L$, $\phi = \omega t - kx$

Malka et al.'s analysis

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering Test-particle model with:

$$E_y = \frac{\sigma_0}{\sigma(x)} E_0 \exp\left\{\frac{-y^2}{\sigma(x)^2}\right\} f(\phi),$$

$$B_z = E_y,$$

where $\sigma(x) = \sigma_0(1 + x^2/R_L^2)$, $R_L = \pi \sigma_0^2/\lambda_L$, $\phi = \omega t - kx$ Flawed because fields don't satisfy Maxwell equations!!

 $\nabla\cdot {\bm B} \neq 0$

<ロ> (四) (四) (注) (注) (三)

Corrected fields

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

I homson Scattering Compton Scattering Any focused laser pulse described by $A_y = A_0(r)$, must also have

$$B_x = \frac{\partial A_y}{\partial z}.$$

$$E_y = \frac{\sigma_0}{\sigma(x)} E_0 \exp\left\{\frac{-y^2}{\sigma(x)^2}\right\},\$$

$$B_z = E_y,\$$

$$B_x =$$

This gives force $v_y B_x$ in the z-direction of the same order as $f_y \Rightarrow$ Get electron rings ejected in forward direction $\boxed{\text{MOVIE}}$ The net result is that a symmetric, tightly focused laser will tend to eject rings of electrons in the forward direction.

Laser Acceleration Schemes

Interaction with Single Electrons, Part 2

Laser focus

Experiment

Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering Lawson-Woodward (LW) theorem: an isolated, relativistic electron cannot gain energy by interacting with an EM field. Conditions:

- the laser field is in vacuum, with no interfering walls or boundaries,
- 2 the electron is highly relativistic along the acceleration path,
- 3 no static electric or magnetic fields are present,
- 4 the interaction region is infinite,
- **5** ponderomotive forces are neglected.

Proposed vacuum schemes

Interaction with Single Electrons Part 2

Laser focus

Experiment Vacuum

Acceleration Schemes

Thomson Scattering Compton Scattering **1** Tightly focused, stationary beam with $I\lambda^2 > 10^{21}$ Wcm⁻² μ m²-electron 'capture' (Ho *et al.*, 2000)

- 2 Tailored laser focus: ponderomotive 'well'
- 3 Sub-cycle acceleration: 1/2-cycle laser pulse; DC axial field
- 4 Vacuum beat-wave optical mixing (Esarey, 1995)
- 6 Magnetic fields (Katsouleas & Dawson, 1983)

Nonlinear Thomson Scattering

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton • Accelerated charges act as radiation sources – e.g. synchrotron.

- Similarly, electrons in laser field will re-emit radiation at harmonics of laser frequency.
- \Rightarrow Nonlinear, or relativistic Thomson scattering

Classical Thomson Scattering

Interaction with Single Electrons, Part 2

Laser focus Experiments Vacuum Acceleration Schemes

Thomson Scattering Compton Power radiated by electron oscillating with velocity in EM field with normalized pump strength a_0 :

$$P_T = \frac{e^2 \omega_0^2 c}{3} a_0^2. \tag{45}$$

Dividing by the Poynting vector for the incoming light, $S = cE_0^2/8\pi$, yields the Thomson scattering cross-section:

$$\sigma_T = \frac{P_T}{S} = \frac{8\pi}{3} r_e^2, \tag{46}$$

100 / 115

where $r_e = e^2/mc^2$ is the classical electron radius.

Relativistic treatment

Interaction with Single Electrons Part 2

Laser focus

Experiment

Vacuum Acceleration Schemes

Thomson Scattering Compton

Liénard-Wiechert potentials for charge in relativistic motion:

$$\phi(\mathbf{x}, t) = \left[\frac{e}{(1 - \beta \cdot \mathbf{n})R}\right]_{\text{ret}}, \quad (47)$$
$$\mathbf{A}(\mathbf{x}, t) = \left[\frac{e\beta}{(1 - \beta \cdot \mathbf{n})R}\right]_{\text{ret}}, \quad (48)$$

where $\beta = \mathbf{v}/c$, **n** is a unit vector from the charge in the direction of observation, and []_{ret} indicates *retarded* time t' = t - R(t')/c.

General radiation field

Interaction with Single Electrons Part 2

Laser focus

Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Radiation (electric) field seen at point P due to the charge at $\mathbf{x}(t)$:

$$\mathbf{E}(\mathbf{x},t) = e \left[\frac{\mathbf{n} - \beta}{\gamma^2 \kappa R^2} \right]_{\text{ret}} + \frac{e}{c} \left[\frac{\mathbf{n} \times \{(\mathbf{n} - \beta) \times \dot{\beta}}{\kappa^3 R} \right]_{\text{ret}}, \quad (49)$$

イロト イヨト イヨト イヨト 二日

102 / 115

where $\kappa = dt'/dt = 1 - eta.{\bf n}$ and $\dot{eta} = deta/dt$ is the acceleration.

Radiated power

Interaction with Single Electrons Part 2

Laser focus

Experiment

Vacuum Acceleration Schemes

Thomson Scattering Compton Energy flux or Poynting vector at the observation point P:

$$\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{B} = \frac{c}{4\pi} \mid E \mid^2 \mathbf{n},$$

Radiated power per unit solid angle:

$$\frac{dP(t)}{d\Omega} = R^2(\mathbf{S.n}) = \frac{c}{4\pi}R^2 \mid E \mid^2.$$
(50)

(日) (四) (注) (日) (三)

Intensity distribution

Interaction with Single Electrons Part 2

Laser focus Experiments Vacuum Acceleration Schemes

Thomson Scattering Compton Scattering Assume that the field can be expressed as a Fourier integral:

$$\mathsf{E}(t) = \int_{-\infty}^{\infty} e^{-i\omega t} \mathsf{E}(\omega) d\omega.$$

Substituting this into Eq. (49), and applying Parseval's theorem for power spectra to Eq. (50) leads to an *intensity* distribution:

$$\frac{d^2 l}{d\omega d\Omega} = \frac{e^2 \omega^2}{4\pi^2 c} \left| \int_{-\infty}^{\infty} \mathbf{n} \times (\mathbf{n} \times \beta) e^{i\omega(t - \mathbf{n} \cdot \mathbf{r}/\mathbf{c})} dt \right|^2.$$
(51)

(日) (四) (注) (日) (三)

Geometry

Special case: periodic motion Sarachik & Schappert (1970)

Laser focus

Thomson Scattering

0

Radiated power *P* per solid angle Ω can be decomposed into multiples *m* of the fundamental frequency ω_0 , whereby:

$$\frac{dP_m}{d\Omega} = \frac{\omega_0^2}{2\pi} \frac{d^2 I_m}{d\omega d\Omega}$$
$$= \frac{e^2 \omega_0^4 m^2}{(2\pi c)^3} \left| \int_0^{2\pi/\omega_0} \mathbf{n} \times (\mathbf{n} \times \mathbf{v}) e^{im\omega_0(t-\mathbf{n}\cdot\mathbf{r}/\mathbf{c})} dt \right|^2.$$
(52)

Radiation from relativistic quiver motion

Interaction with Single Electrons, Part 2

Laser focus Experiments Vacuum

Acceleration Schemes

Thomson Scattering Compton Scattering Apply formula directly to the periodic particle orbits Eq. (35) in the *average rest frame* to get power spectrum:

$$\frac{dP_R^m}{d\Omega_R} = \frac{2m^2 A(\omega_R^2)}{\gamma_0^2} \left[\frac{\cot^2 \theta_R}{2q^2} J_m^2(\sqrt{2}q \, m \sin \theta) + J'_m^2(\sqrt{2}q \, m \sin \theta_R) \right],\tag{53}$$

where

$$A(\omega_R^2)=\frac{e^2\omega_R^2a_0^2}{8\pi c},$$

 J_m is the usual Bessel function and J'_m its derivative; θ_R is the angle between the **n** and the laser wave-vector in the average rest frame; $q = a_0/\gamma_0$, $\omega_R = \omega_0/\gamma_0$.

Observed radiation spectrum in lab frame

nteraction with Single Electrons, Part 2

Laser focus Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Lorentz-transform result back to the lab frame to get the *observed* power spectrum.

$$\frac{dP_L^m}{d\Omega_L} = D(a_0, \theta_L) \frac{dP_R^m}{d\Omega_R},$$
(54)

where

$$D(a_0,\theta_L) = \frac{\gamma_0^4}{\left(1 + \frac{a_0^2}{2}\sin^2\frac{\theta_L}{2}\right)^4}.$$

The spectrum also no longer consists of integer harmonics of ω_0 , but at *shifted* frequencies given by:

$$\omega_L^m = \frac{m\omega_0}{\left(1 + \frac{a_0^2}{2}\sin^2\frac{\theta_L}{2}\right)}.$$
(55)

Strongly relativistic limit: C-polarized light

Interaction with Single Electrons Part 2

Laser focus Experiments

Vacuum Acceleration Schemes

Thomson Scattering Compton Extreme intensity limit: ($a_0 \gg 1$), radiation is predominantly forward and confined to an angle

$$\theta_L = \sqrt{8}/a_0$$

from the axis of propagation. Headlamping effect: $\theta_L = \theta_p$ orbit pitch-angle for C-light. Also get harmonic cutoff at:

$$M = m_{\rm max} = 3(a_0^2/2)^{3/2}.$$

Linearly polarized light

Interaction with Single Electrons, Part 2

Laser focus

Vacuum Acceleration

Thomson Scattering Compton Expand the angular radiation pattern Eq. (52) for $a_0 < 1$. The total scattered power in the first three harmonics — integrated over solid angle in the laboratory frame — has the following leading terms:

$$P_{1} \simeq W_{0} \frac{8\pi}{3} a_{0}^{2},$$

$$P_{2} \simeq W_{0} \frac{14\pi}{5} a_{0}^{4},$$

$$P_{3} \simeq W_{0} \frac{621\pi}{224} a_{0}^{6},$$
(56)

where $W_0 = e^2 \omega_0^2 c/8\pi$ is a characteristic scattered power per electron for a given laser frequency ω_0 .

Seeing figures-of-eight Chen, Umstadter *et al.*(Nature, 1998)

Laser focus

Experiment

Vacuum Acceleratior Schemes

Thomson Scattering

Compton Scattering

Figure: Angular measurements (points) of a) 2nd harmonic light and b) 3rd harmonic light generated by relativistic electrons in a high intensity laser focus.

Nonlinear Compton scattering

Consider recoil energy and momentum acquired by the electron.

Interaction with Single Electrons Part 2

Laser focus Experiments Vacuum Acceleration

Thomson Scattering

Compton Scattering

Figure: Geometry for multiphoton-electron scattering event in which electron is initially at rest.

- Classical Thomson scattering: $\hbar\omega/mc^2\ll 1$ ignore recoil effects.
- Compton scattering: $\hbar\omega/mc^2\sim 1\Rightarrow$ gain in momentum for the electron; loss of photon energy

Single-photon scattering

Interaction with Single Electrons, Part 2

Laser focus Experiments Vacuum Acceleration

Thomson Scattering

Compton Scattering For single-photon scattering, the energy change ΔE is easily found by momentum and energy conservation:

$$\Delta E = \frac{\frac{\hbar\omega}{mc^2}(1 - \cos\theta)}{1 + \frac{\hbar\omega}{mc^2}(1 - \cos\theta)}\hbar\omega,$$
(57)

which corresponds to the usual wavelength shift of the scattered photon,

$$\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta),$$

where $\lambda_c = h/mc = 0.0243$ Å is the Compton wavelength.

Multiphoton scattering

For relativistic electrons, the photon frequency gets upshifted by γ in the electron rest frame. Relevant parameter:

 $\gamma n\hbar\omega/mc^2$.

Interaction with Single Electrons, Part 2

Laser focus

Experiment

Vacuum Acceleration Schemes

Thomson Scattering

Compton Scattering

Observation of multiphoton Compton scattering Bula et al., 1996

- Interaction with Single Electrons, Part 2
- Laser focus
- Experiments
- Vacuum Acceleration Schemes
- Thomson Scattering
- Compton Scattering

- Experiment at the Stanford Linear Accelerator Center (SLAC): where a 47 GeV ($\gamma \simeq$ 92000) 'collided' with a TW, 1 ps, 1 μ m laser pulse.
- Nd:glass laser photons have $\hbar\omega \simeq 1$ eV, giving $\gamma \hbar\omega/mc^2 \sim 1$.
- \rightarrow Significant multiple scattering at 10¹⁸ Wcm⁻², which scales as $P_n \sim a_0^{2n}.$
 - Broad agreement with QED theory.

FIG. 5. The normalized yield of scattered electrons of energies corresponding to $n=2,\,3,\,$ and 4 infrared laser photons per interaction versus the interaction of the laser field at the interaction point. The bands represent a simulation of the experiment, including 50% wavestrainty in laser intensity and 10% uncertainty in $N_{\gamma},$