Short Pulse Laser Interactions with Matter

Paul Gibbon Forschungszentrum Jülich

Historical Background Technology & Physics Multiphoton Single electron: Wave Propagation Metal Optics ICF Lasers

Part I

Introduction to Short Pulse Laser Physics

イロト イロト イヨト イヨト 三日

Introduction: Historical Background

Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

1 Introduction: Historical Background

Progress in technology Multiphoton Physics Single-Electron Interaction with Intense Electromagnetic Fields Nonlinear Wave Propagation Metal Optics Long Pulse Laser-Plasma Interactions (ICF) Femtosecond Lasers

Web site for lecture handouts

www.fz-juelich.de/zam/splim

4/115

3

Laser technology progress: chirped pulse amplification

Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

Figure: Progress in peak intensity since the invention of the laser in 1960.

5/115

-

What kind of physics does this field involve?

Introduction: Historical Background

Technology & Physics Multiphoton Single electron

Single electron Wave Propagation Metal Optics ICF Lasers

Contributory fields are numerous and diverse:

- laser physics
- atomic physics
- plasma physics
- astrophysics
- nuclear & elementary particle physics

Many theoretical models have roots in these more classical areas.

Extreme conditions: violent science

Introduction: Historical Background

Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF

- Ordinary matter solid, liquid or gas rapidly ionized when subjected to high intensity irradiation.
- Electrons released are then immediately caught in the laser field
- Oscillate with a characteristic energy which then dictates the subsequent interaction physics.
- Continual challenge to both theoreticians and experimentalists.

Prehistory

Introduction: Historical Background

Technology & Physics

Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

- Multiphoton physics
- Single-electron interaction with intense EM fields

8/115

- Nonlinear wave propagation
- Metal optics (Drude model)
- Long pulse laser-plasma interactions (ICF)

Multiphoton physics

Introduction: Historical Background

Technology & Physics

Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

- Standard lasers (0.25 μm − 13.4 μm): cannot observe the photoelectric effect on normal material because ħω ≪ I_p.
- Higher intensities in the 1960s and '70s (Fig. 1) led to possibility of *multiphoton* ionisation:

$$n\hbar\omega = I_p.$$

• Electron absorbs *n* photons of moderate energy (eg laser photons with $\hbar \omega \approx eV$)

Electrons in intense electromagnetic fields

Introduction: Historical Background

Technology & Physics Multiphoton

Single electrons

Wave Propagation Metal Optics ICF Lasers

- Volkov (1935): electron 'dressed' by field
- Schwinger (1949): radiated power
- Invention of laser (1960): theoretical works on electron dynamics
- Figure of merit q:

$$q = \frac{eE_L}{m\omega c},\tag{1}$$

10/115

e = electron charge, m = electron mass, c = speed of light;

 E_L = laser electric field strength; ω = light frequency.

 Ostriker & Gunn (1969) – electron dynamics in vicinity of pulsars:

$$q\sim 100$$

Nonlinear wave propagation

Introduction: Historical Background Technology &

Physics Multiphoton Single electron Wave

Propagation Metal Optics

ICF Lasers

- Plasmas can support large-amplitude, nonlinear waves.
- Early works by Akhiezer & Polovin (1956) and Dawson (1959)
- Numerous studies on the behavior of:
 - large-amplitude Langmuir (electrostatic) waves
 - propagation of high-intensity electromagnetic radiation in plasmas
- Tajima and Dawson (1979) proposed 'laser electron accelerator'

 fresh wave of interest in wave propagation, including from members of the particle accelerator community.

Drude model of metal optics

Historical Background Technology & Physics Multiphoton Single electron: Wave Propagation Metal Optics ICF

- Atoms in a metal share a limited number of 'valence' electrons, forming a conduction band Drude (1906)
- These carry current and heat through the material.
- For an element with mass density ρ and atomic weight A, free electron density is given by:

$$n_e = N_A Z^* \rho / A$$

where N_A is Avogadro's constant and Z^* is the number of valence electrons per atom.

Drude model: conductivity

Historical Background Technology & Physics Multiphoton Single electron: Wave Propagation Metal Optics ICF

• Electrical conductivity of a metal:

$$\sigma_e = n_e e^2 \tau / m_e$$

where τ is the collision or relaxation time.

• Ohm's Law:

 $\mathbf{j} = \sigma_e \mathbf{E}$

• Resulting AC conductivity:

$$\sigma(\omega) = \frac{\sigma_e}{1 - i\omega\tau}.$$
 (2)

イロト イロト イヨト イヨト 二座

Drude model: dielectric constant

Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

 Combine σ(ω) from Eq. (2) with Maxwell's equations to get complex dielectric constant:

$$arepsilon = 1 - rac{\omega_{
ho}^2}{\omega(\omega + i
u)},$$

where

$$\omega_p^2 = 4\pi n_e e^2/m_e$$

is the *plasma frequency* of the valence electrons, and $\nu \equiv \tau^{-1}$ is their collision frequency.

Long pulse interactions: Inertial Confinement Fusion (ICF)

- Historical Background Technology & Physics Multiphoton Single electrons
- Wave Propagation
- Metal Optio
- ICF

- Principle: micrometer-sized pellet filled with DT fuel compressed to enormous densities by many laser beams focused symmetrically onto its surface
- Pellet shell material ablates radially outwards, pushing the fuel inwards via rocket effect
- Fuel implodes, reaching densities $\rho \sim 500 1000 \text{ gcm}^{-3}$ and temperatures T of 10 keV (10⁷ degrees Kelvin)
- Laser fusion became official in 1972 (previously classified): paper in Nature by Nuckolls *et al.*

Requirements for ICF

Introduction: Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF • Aim to satisfy *Lawson criterion* for thermonuclear confinement:

$$nT\tau > 10^{15} \text{ keV s cm}^{-3}$$
. (3)

- Target must release fusion energy before it blows apart
- – leads to requirement for the *areal fuel density* $\rho R \ge 0.3$, where R is the final capsule radius
- 'Hot spot' scenario: hot, low density core surrounded by cold, high density fuel
- Laser driver energy $\sim 1 {
 m MJ}$
- Facilities currently being built: NIF, Livermore, USA; LMJ, Bordeaux, France

ICF issues relevant to short pulse interactions

- Introduction: Historical Background Technology &
- Physics Multiphoton Single electron Wave Propagation Metal Optics

ICF

- Hydrodynamics ion motion, target expansion (prepulse physics)
- Coronal processes Fig. 2:
 - parametric instabilities Raman and Brillouin scattering
 - resonance absorption kinetic wave-particle interactions
 - fast electron generation & heating: 'suprathermal' temperature T_H given by:

$$T_H \simeq 14 \left(I\lambda^2\right)^{1/3} \,\mathrm{keV},$$

where I is the laser intensity in units of 10^{16} $\rm W cm^{-2}$ and λ the laser wavelength in microns.

Coronal physics in ICF

Femtosecond TW laser system: front end

Introduction: Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

Femtosecond TW laser system: components

- Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers
- 1 Oscillator: produces short, low-energy pulse
- 2 Stretcher: converts fs pulse to 50-200 ps
- **3** Amplifier: increase the pulse energy by a factor of $10^7 10^9$
- Compressor: performs optical inverse of the stretcher to deliver an amplified fs pulse

Femtosecond TW laser system: schematic

<ロ> < (回) < (回) < (目) < (日) < (日) < (日) < (日) < (日) < (1) < (1) </p>

Chirped pulse amplification

- Introduction: Historical Background Technology & Physics Multiphoton Single electron Wave
- Propagation
- ICF Lasers

- Invented by Gerard Mourou and co-workers in 1985
- Way of increasing intensities beyond damage thresholds for 'long' pulses (100-200 ps)
- Fluence $\leq 0.16~{\rm Jcm^{-2}}\tau_{\rm \it ps}^{1/2}$
- way below saturation levels of amplifying medium $\sim 1~{\rm Jcm^{-2}}$ for Ti:sapphire.
- Stretcher-compressor separates pulse generation and amplification stages
- - permits standard techniques & components in amplifier chain

Oscillator

Historical Background Technology & Physics Multiphoton Single electron

Wave Propagation

Metal Opt

Lasers

• Femtosecond laser sources are

- mode-locked: output pulse is superposition of many electromagnetic waves (or laser modes)
- transform or bandwidth limited:

$$au_{p} \sim 1/\Delta
u$$

- Large bandwidth is essential to generate a short pulse.
- Example: 10 fs Gaussian pulse $\rightarrow \Delta \nu \tau = 0.44$, giving $\Delta \nu = 4.4 \times 10^{13}$ Hz, which for a central wavelength of 800 nm, translates to:

$$\Delta\lambda = \Delta
u rac{\lambda^2}{c} = 94$$
 nm.

Amplification & recompression

Introduction: Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers

- Regenerative preamplifier gain $\sim 10^7$
- Power amplifiers gain $\sim 10-1000$
- Amplified pulse recompressed using grating pair or quadruple

Final focus

Introduction: Historical Background Technology & Physics Multiphoton Single electrons Wave Propagation Metal Optics ICF Lasers • Off-axis, parabolic mirror (f/4 - f/2)

- Focal spot of Ti:sapphire laser with 3 μm diameter containing more than 50% of the pulse energy.
- Peak intensity here: $4 \times 10^{19} \text{ Wcm}^{-2}$.

Multi-Terawatt laser systems and laboratories worldwide

Historical Background Technology & Physics Multiphoton Single electror Wave Propagation

Lasers

Name	Lab	Country	Type	λ	Energy	τ_{I}	Р	σ_{I}	4
				(nm)	(J)	(fs)	(TW)	(µm)	(Wcm ⁻²)
Petawatt ^a	LLNL	USA	Nd:glass	1053	700	500	1300	-	$> 10^{20}$
VULCAN ^b	RAL	UK	Nd:glass	1053	423	410	1030	10	1.06×10^{21}
PW Mod. ^C	ILE	JP	Nd:glass	1054	420	470	1000	30	10 ²⁰
PHELIX	GSI	D	Nd:glass	1064	500	500	1000	-	-
LULI PW	LULI	F	Ti:Sa	800	30	300	100		-
APR PW	APR	JP	Ti:Sa	800	2	20	100	11	2×10^{19}
-	FOCUS	USA	Ti:Sa	800	1.2	27	45	(1)	(8×10^{21})
ALFA 2	FOCUS	USA	Ti:Sa	800	4.5	30	150	(1)	(10^{22})
S. Jaune	LOA	F	Ti:Sa	800	0.8	25	35		10 ¹⁹
Lund TW	LLC	SW	Ti:Sa	800	1.0	30	30	10	$> 10^{19}$
MBI Ti:Sa	MBI	D	Ti:Sa	800	0.7	35	20		$> 10^{19}$
Jena TW	IOQ	D	Ti:Sa	800	1.0	80	12	3	5×10^{19}
ASTRA	RAL	UK	Ti:Sa	800	0.5	40	12		10 ¹⁹
USP	LLNL	USA	Ti:Sa	800	1 (10)	100 (30)	10 (100)		5×10^{19}
UHI 10	CEA	F	Ti:Sa	800	0.7	65	10		5×10^{19}