Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield solutions Electron

Part VI

Interaction with Underdense Plasmas -Wakefield Excitation

Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield solutions Electron acceleration

6 Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield solutions Electron acceleration

Wakefield excitation

Wakefield excitation

Small pump strengths

Ponderomotive kick The quasistatic

Wakefield solutions Electron EM wave propagation is described by the transverse wave equation (74):

$$\frac{d^2 p_y}{d\tau^2} + \frac{\omega_p^2 \beta_p^2}{\beta_p^2 - 1} \frac{\beta_p u_y}{\beta_p - u_x} = 0$$

Plasma wave governed by longitudinal motion (76):

$$\frac{d}{d\tau}\left[\left(u_{x}-\beta_{p}\right)\frac{dp_{x}}{d\tau}+u_{y}\frac{dp_{y}}{d\tau}\right]=\frac{\omega_{p}^{2}\beta_{p}^{2}u_{x}}{\beta_{p}-u_{x}}$$

How we can drive plasma waves with laser pulses?

Wakefield excitation - small pump strengths

Wakefield excitation

Small pump strengths

Ponderomotive kick The quasistatic approximation Wakefield solutions

acceleration

Recall that Eqs. (74) and (76) are coupled through the nonlinear terms. Retain a nonlinear *pump* term in Eq. (76) to give:

$$\frac{d^2 u_x}{d\tau^2} + \omega_p^2 u_x \simeq \frac{1}{\beta_p} \frac{d^2}{d\tau^2} \left(\frac{u_y^2}{2}\right), \qquad (93)$$

where we have set $p_y = \gamma u_y \simeq u_y$ if $u_{x,y} \ll 1$.

 \Rightarrow Driven oscillator: pump strength \propto laser intensity!

$$n_e = \frac{\beta_p n_0}{\beta_p - u_x}$$

===>
$$n = n_e - n_0 = \frac{\beta_p n_0 - n_0 (\beta_p - u_x)}{\beta_p - u_x} = \frac{n_0 u_x}{\beta_p - u_x} \approx \frac{n_0 u_x}{\beta_p}$$

$$\frac{d^2 n}{d\tau^2} + \omega_p^2 n = \frac{n_0}{\beta_p^2} \frac{d^2}{d\tau^2} \frac{u_y^2}{2}$$
$$\frac{\partial}{\partial t} = \frac{\partial}{\partial \tau}, \qquad \frac{\partial}{\partial x} = -\frac{1}{c\beta_p} \frac{\partial}{\partial \tau}$$
$$\frac{\partial^2 n}{\partial t^2} + \omega_p^2 n = \frac{n_0}{2} \frac{\partial^2}{\partial x^2} \frac{v_y^2}{c}$$

Wakefield excitation: physical picture

Wakefield excitation

Small pump strengths

Ponderomotive kick

The quasistatic approximation Wakefield solutions Electron acceleration

- Plasma wave is driven by longitudinal *ponderomotive force*, which pushes electrons away from regions of high intensity.
- When pulse enters fresh plasma, electrons initially pushed forward.
- After pulse maximum, ponderomotive force reverses sign
- $\Rightarrow\,$ electrons receive another kick in the opposite direction

- see Fig. 4

Ponderomotive kick: t = 0

Ponderomotive kick: $t = \pi/\omega_p$

Ponderomotive kick: $t = 2\pi/\omega_p$

Resonance condition

Wakefield excitation

Small pump strengths

Ponderomotive kick

The quasistatic approximation Wakefield solutions Electron acceleration The amplitude of the longitudinal oscillation will be enhanced if the pulse length is roughly matched to the plasma period:

$$\tau_L \simeq \omega_p^{-1}.$$

Example

What plasma density do we need to match a 100 fs pulse?

$$\omega_{p}\simeq 5 imes 10^{4} n_{e}^{1/2}~s^{-1}$$

Matching condition:

$$n_e\simeq 4 imes 10^{14} au_{
m ps}^{-2}~
m cm^{-3}$$

For 100 fs, need $n_e = 4 \times 10^{16} \text{ cm}^{-3}$.

Quasistatic approximation: speedboat model of wakefields

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions Electron acceleration

- What wake amplitude can we expect?
- Analyse using coordinate transformation to a frame moving with the group velocity of the laser pulse v_g ~ c.
- Choose variables (ξ, τ) such that:

$$\xi = x - ct, \tau = t.$$

Quasi-static variables

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions Electron acceleration • Partial derivatives then become:

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi}; \qquad \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} - c\frac{\partial}{\partial \xi} \simeq -c\frac{\partial}{\partial \xi} \qquad (94)$$

• The time τ is considered to be slowly varying during the transit time of the pulse – typically the Rayleigh diffraction time

$$t_R = R_L/c = rac{k_0\sigma_L^2}{c} \gg 2\pi/\omega_0.$$

Can then set $\partial/\partial \tau = 0$ in this 'co-moving' frame.

• NB: Eulerian, (not Lorentz) transformation.

Driven oscillator within QSA

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions Electron acceleration Electron density (from 93 with $n \simeq n_0 u_x / \beta_p$), or directly from Maxwell's equations:

$$\left(\frac{\partial^2}{\partial\xi^2} + k_p^2\right)n = \frac{n_0}{2}\frac{\partial^2}{\partial\xi^2}a^2.$$
(95)

Use Poisson's equation to get electric field and potential:

$$rac{\partial^2 \phi}{\partial \xi^2} = -rac{\partial E}{\partial \xi} = 4\pi en,$$

Wake electric field and potential

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions Electron acceleration *E* normalized to $m\omega_p c/e$; *Phi* to mc/e:

$$\left(\frac{\partial^2}{\partial\xi^2} + k_p^2\right) E = k_p^2 \frac{\partial}{\partial\xi} \Phi_L, \tag{96}$$

$$\left(\frac{\partial^2}{\partial\xi^2} + k_p^2\right)\phi = -k_p^2\Phi_L,\tag{97}$$

where $\Phi_L = -\frac{1}{2} < a^2 >$ is the normalized ponderomotive potential of the laser pulse, averaged over the laser period $2\pi/\omega_0$.

Wakefield: solution

Wakefield excitation

Small pump strengths Ponderomoti

kick The quasistatic

The quasistatic approximation

Wakefield solutions

Electron acceleration Eq. (97) is a driven Helmholtz equation – solve with Green function methods.

Formal solution:

$$\phi(\xi) = -\frac{k_p}{4} \int_{\xi}^{\infty} d\xi' \mid a(\xi') \mid^2 \sin[k_p(\xi - \xi')].$$
(98)

Wakefield: solution for sin² pulse

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions

Electron acceleration Consider 'sin²'-pulse:

$$a^2(\xi) = \left\{ egin{array}{c} a_0^2 \sin^2(rac{\pi\xi}{\xi_L}), & 0 \leq \xi \leq \xi_L \ 0, & \xi < 0, \xi > \xi_L \end{array}
ight.$$

Behind the pulse ($\xi < 0$), have:

$$\phi(\xi) = \frac{2\pi^2 \Phi_L}{(4\pi^2 - k_p^2 \xi_L^2)} \left[\cos k_p (\xi - \xi_L) - \cos k_p \xi\right].$$
(99)

Solution behind pulse: Wake E-field

Wakefield excitation

Small pump strengths

Ponderomotiv kick

The quasistatic approximation

Wakefield solutions

Electron acceleration The longitudinal electric field left behind by the pulse is then simply:

$$E_z = -\frac{\partial \phi}{\partial \xi}$$

= $\frac{2\pi^2 \Phi_L k_p}{(4\pi^2 - k_p^2 \xi_L^2)} [\sin k_p (\xi - \xi_L) - \sin k_p \xi].$ (100)

Wakefield – resonance condition II

Wakefield excitation

Small pump strengths Ponderomotive kick

The quasistatic approximation

Wakefield solutions Eq. (100) has a maximum (resonance) for $k_p\xi_L = 2\pi$, or equivalently, for pulse lengths $\xi_L = \lambda_p$. Using l'Hospital's rule:

$$E_z^{\max}(\xi) = \frac{\pi^2 \Phi_L}{\lambda_p} \cos k_p \xi, \qquad (101)$$

- scales with the laser intensity, or a_0^2 .

Numerical solution: small laser amplitude

Numerical solution: resonance condition (small amplitudes)

The quasistatic

Wakefield solutions

Electron acceleration

Numerical solution: large laser amplitude

Wake amplitude scaling in nonlinear regime Murusidze & Berzhiani, 1990

Wakefield excitation

Small pump strengths Ponderomotive kick The guasistatic

approximation

Wakefield solutions

Electron acceleration Analytical solution possible for a square pump in the limit $\beta_g \rightarrow 1 \Rightarrow$ Scaling of the wake-variable maxima:

$$\phi_{\max} \sim \gamma_{\perp}^{2} - 1$$

$$E_{\max} \sim \frac{\gamma_{\perp}^{2} - 1}{\gamma_{\perp}}$$

$$p_{\max} \sim (\gamma u)_{\max} = \frac{\gamma_{\perp}^{4} - 1}{2\gamma_{\perp}^{2}}$$
(102)

where $\gamma_{\perp} = (1 + a^2)^{1/2}$ as on p. ??.

Electron acceleration by wakefields

Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic

approximation Wakefield solutions

Electron acceleration

- Conventional synchrotrons and LINACS operate with field gradients limited to around 100 MVm⁻¹.
- Plasma is already ionized; can theoretically sustain a field 10⁴ times larger, given by:

$$E_{p} = \frac{m_{e}c\omega_{p}}{e}\varepsilon$$

$$\simeq n_{18}^{1/2}\varepsilon \text{ GV cm}^{-1}, \qquad (103)$$

where n_{18} is the electron density in units of 10^{18} cm⁻³.

Laser-electron accelerator

Tajima & Dawson, 1979

Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield solutions

Electron acceleration Laser-driven wakefields must propagate with velocities approaching the speed of light ($v_p = v_g < c$). Plasma wave has a phase velocity:

$$v_{\rho} = c \left(1 - \frac{\omega_{\rho}^2}{\omega_o^2}\right)^{\frac{1}{2}} \simeq c \left(1 - \frac{1}{2\gamma_{\rho}^2}\right), \qquad (104)$$

where $\gamma_p = \omega_0^2 / \omega_p^2$.

Acceleration length

Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield

Electron acceleration A relativistic electron ($v \simeq c$) trapped in such a wave will be accelerated over at most *half a wavelength* in the wave-frame, after which it starts to be *decelerated*. Effective acceleration length:

$$L_{a} = \frac{\lambda_{\rho}c}{2(c - v_{\rho})} \simeq \lambda_{\rho}\gamma_{\rho}^{2}$$
$$= \frac{\omega^{2}}{\omega_{\rho}^{2}}\lambda_{\rho}$$
$$\simeq 3.2 n_{18}^{-3/2}\lambda_{\mu m}^{-2} \text{ cm.} \qquad (105)$$

Maximum energy gain

Wakefield

Small pump strengths Ponderomotive kick The quasistatic approximation Wakefield solutions

Electron acceleration Combine Eq. (103) and Eq. (105) to obtain the maximum energy gain:

$$\Delta U = eE_{p}.L_{a}$$

$$= e\left(\frac{m\omega_{p}c}{e}\right)\varepsilon\frac{\omega^{2}}{\omega_{p}^{2}}\frac{2\pi c}{\omega_{p}}$$

$$= 2\pi \left(\frac{\omega}{\omega_{p}}\right)^{2}\varepsilon mc^{2}$$

$$\simeq 3.2 n_{18}^{-1}\lambda_{\mu m}^{-2} \text{ GeV.}$$
(106)

Limiting factors

Wakefield excitation

Small pump strengths Ponderomotive kick The quasistatic approximation

Wakefield solutions

Electron acceleration In principle, TW laser is capable of accelerating an electron to 5 GeV in a distance of 5 cm through a plasma with density 10^{18} cm⁻³. Spoiling factors:

- Diffraction: typically have $Z_R \ll L_a$, so some means of guiding the laser beam over the dephasing length is essential
- Propagation instabilities beam break-up: modulation; hosing; Raman