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Part VI

Interaction with Underdense Plasmas -
Wakefield Excitation
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Wakefield excitation

EM wave propagation is described by the transverse wave equation
(74):

d2py

dτ 2
+

ω2
pβ

2
p

β2
p − 1

βpuy

βp − ux
= 0

Plasma wave governed by longitudinal motion (76):

d

dτ

[
(ux − βp)

dpx

dτ
+ uy

dpy

dτ

]
=

ω2
pβ

2
pux

βp − ux
.

How we can drive plasma waves with laser pulses?
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Wakefield excitation - small pump strengths

Recall that Eqs. (74) and (76) are coupled through the nonlinear
terms. Retain a nonlinear pump term in Eq. (76) to give:

d2ux

dτ 2
+ ω2

pux ' 1

βp

d2

dτ 2

(
u2

y

2

)
, (93)

where we have set py = γuy ' uy if ux,y � 1.

⇒ Driven oscillator: pump strength ∝ laser intensity!
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Wakefield excitation: physical picture

• Plasma wave is driven by longitudinal ponderomotive force,
which pushes electrons away from regions of high intensity.

• When pulse enters fresh plasma, electrons initially pushed
forward.

• After pulse maximum, ponderomotive force reverses sign

⇒ electrons receive another kick in the opposite direction

– see Fig. 4
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Ponderomotive kick: t = 0

fpond

+

+

+

t1
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Ponderomotive kick: t = π/ωp

fpond

eEx

t2 +

+

+
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Ponderomotive kick: t = 2π/ωp

eEx

t3

fpond

+

+

+
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Resonance condition

The amplitude of the longitudinal oscillation will be enhanced if the
pulse length is roughly matched to the plasma period:

τL ' ω−1
p .

Example
What plasma density do we need to match a 100 fs pulse?

ωp ' 5× 104n1/2
e s−1

Matching condition:

ne ' 4× 1014τ−2
ps cm−3

For 100 fs, need ne = 4× 1016 cm−3.
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Quasistatic approximation: speedboat model of
wakefields

• What wake amplitude can we expect?

• Analyse using coordinate transformation to a frame moving with
the group velocity of the laser pulse vg ' c .

• Choose variables (ξ, τ) such that:

ξ = x − ct, τ = t.
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Quasi-static variables

• Partial derivatives then become:

∂

∂x
=

∂

∂ξ
;

∂

∂t
=

∂

∂τ
− c

∂

∂ξ
' −c

∂

∂ξ
(94)

• The time τ is considered to be slowly varying during the transit
time of the pulse – typically the Rayleigh diffraction time

tR = RL/c =
k0σ

2
L

c
� 2π/ω0.

Can then set ∂/∂τ = 0 in this ‘co-moving’ frame.

• NB: Eulerian, (not Lorentz) transformation.
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Driven oscillator within QSA

Electron density (from 93 with n ' n0ux/βp), or directly from
Maxwell’s equations:(

∂2

∂ξ2
+ k2

p

)
n =

n0

2

∂2

∂ξ2
a2. (95)

Use Poisson’s equation to get electric field and potential:

∂2φ

∂ξ2
= −∂E

∂ξ
= 4πen,
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Wake electric field and potential

E normalized to mωpc/e; Phi to mc/e:(
∂2

∂ξ2
+ k2

p

)
E = k2

p

∂

∂ξ
ΦL, (96)(

∂2

∂ξ2
+ k2

p

)
φ = −k2

pΦL, (97)

where ΦL = − 1
2 < a2 > is the normalized ponderomotive potential of

the laser pulse, averaged over the laser period 2π/ω0.
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Wakefield: solution

Eq. (97) is a driven Helmholtz equation – solve with Green function
methods.
Formal solution:

φ(ξ) = −kp

4

∫ ∞

ξ

dξ′ | a(ξ′) |2 sin[kp(ξ − ξ′)]. (98)
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Wakefield: solution for sin2 pulse

Consider ‘sin2’-pulse:

a2(ξ) =

{
a2
0 sin2(πξ

ξL
), 0 ≤ ξ ≤ ξL

0, ξ < 0, ξ > ξL

Behind the pulse (ξ < 0), have:

φ(ξ) =
2π2ΦL

(4π2 − k2
pξ2

L)
[cos kp(ξ − ξL)− cos kpξ] . (99)
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Solution behind pulse: Wake E-field

The longitudinal electric field left behind by the pulse is then simply:

Ez = −∂φ

∂ξ

=
2π2ΦLkp

(4π2 − k2
pξ2

L)
[sin kp(ξ − ξL)− sin kpξ] . (100)
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Wakefield – resonance condition II

Eq. (100) has a maximum (resonance) for kpξL = 2π, or equivalently,
for pulse lengths ξL = λp.
Using l’Hospital’s rule:

Emax
z (ξ) =

π2ΦL

λp
cos kpξ, (101)

– scales with the laser intensity, or a2
0.
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Numerical solution: small laser amplitude
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Numerical solution: resonance condition (small
amplitudes)
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Numerical solution: large laser amplitude
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Wake amplitude scaling in nonlinear regime
Murusidze & Berzhiani, 1990

Analytical solution possible for a square pump in the limit βg → 1 ⇒
Scaling of the wake-variable maxima:

φmax ∼ γ2
⊥ − 1

Emax ∼
γ2
⊥ − 1

γ⊥
(102)

pmax ∼ (γu)max =
γ4
⊥ − 1

2γ2
⊥

where γ⊥ = (1 + a2)1/2 as on p. ??.
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Electron acceleration by wakefields

• Conventional synchrotrons and LINACS operate with field
gradients limited to around 100 MVm−1.

• Plasma is already ionized; can theoretically sustain a field 104

times larger, given by:

Ep =
mecωp

e
ε

' n
1/2
18 ε GV cm−1, (103)

where n18 is the electron density in units of 1018 cm−3.
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Laser-electron accelerator
Tajima & Dawson, 1979

Laser-driven wakefields must propagate with velocities approaching
the speed of light (vp = vg < c).
Plasma wave has a phase velocity:

vp = c

(
1−

ω2
p

ω2
o

) 1
2

' c

(
1− 1

2γ2
p

)
, (104)

where γp = ω2
0/ω2

p.

166 / 173



Wakefield
excitation

Small pump
strengths

Ponderomotive
kick

The quasistatic
approximation

Wakefield
solutions

Electron
acceleration

Acceleration length

A relativistic electron (v ' c) trapped in such a wave will be
accelerated over at most half a wavelength in the wave-frame, after
which it starts to be decelerated.
Effective acceleration length:

La =
λpc

2(c − vp)
' λpγ

2
p

=
ω2

ω2
p

λp

' 3.2 n
−3/2
18 λ−2

µm cm. (105)
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Maximum energy gain

Combine Eq. (103) and Eq. (105) to obtain the maximum energy
gain:

∆U = eEp.La

= e
(mωpc

e

)
ε
ω2

ω2
p

2πc

ωp

= 2π

(
ω

ωp

)2

ε mc2

' 3.2 n−1
18 λ−2

µm GeV. (106)
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Limiting factors

In principle, TW laser is capable of accelerating an electron to 5 GeV
in a distance of 5 cm through a plasma with density 1018 cm−3.
Spoiling factors:

• Diffraction: typically have ZR � La, so some means of guiding
the laser beam over the dephasing length is essential

• Propagation instabilities – beam break-up: modulation; hosing;
Raman
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