
Project 1.

1 Floquet Theory

Consider the n× n linear equation

y′(t) = A(t)y(t), t ∈ R, (1)

where A(t) is a T -periodic function. Let Φ(t) be a fundamental solution of (1), i.e. Φ′(t) = A(t)Φ(t)
and Φ is nonsingular. Then from the periodicity of A(·), Φ(t + T ) is again satisfies a fundamental
solution. Since there are only n independent solutions of (1), thus there exists a constant nonsingular
matrix C such that

Φ(t + T ) = Φ(t)C.

Since any solution y can be expressed as Φ(t)c for some constant vector c, we get

y(t + T ) = Φ(t)Cc.

Now if we choose c to be an eigenvector of C with eigenvalue ρ. Then the corresponding y(t) := Φ(t)c
satisfies

y(t + T ) = ρy(t).

Let C has eigenvalues ρ1, ..., ρn. with eigenvectors c1, ..., cn. Then the solution

yi(t) := Φ(t)ci

satisfies
yi(t + T ) = ρiyi(t),

The above definition of ρi are independent of the choice of a particular choice of the fundamental
solution. If Ψ(t) is another fundamental solution, then there exists a constant D such that Ψ(t) =
Φ(t)D. It is easy to check from this that

C := Φ(T )Φ(0)−1 = Ψ(T )Ψ(0)−1.

The eigenvalues ρi are called the characteristic values of (1). Notice that the Wronskian W (t) :=
det Φ(t) satisfies

W ′(t) = (tr(A(t))W (t).

Hence, W (t) = exp
(∫ t

0
(tr(A(s)) ds

)
6= 0. Thus, ρi 6= 0 for all i. It is convinient to express ρi = eTµi .

The constants µi, i = 1, ..., n are called the Floquet exponents of (1). If we define φi(t) = y(t)e−µit,
then φi is a T -periodic function.

φi(t + T ) = y(t + T )e−µi(t+T )

= eµiT yi(t)e−µi(t+T )

= yi(t)e−µit

= φi(t).

Thus, we may express
yi(t) = eµitφi(t).

If the real part of µi ≤ 0, then the corresponding yi(t) is bounded for t ≥ 0.
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2 Sturm-Liouville equations

We consider one dimensional Sturm-Liouville equation over periodic structure:

(p(x)u′)′ + q(x)u = 0 (2)

where p(·) 6= 0 and q(·) are periodics function with period d. By considering

y(x) =
(

u
p(x)u′

)
,

this second order equation can be reduced to a first-order 2× 2 system:

y′ = A(x)y, A =
(

0 1
p

q 0

)
,

According to the Floquet theory, there exist solutions yi, i = 1, 2 and Floquet exponents µi such
that

yi(x + d) = eµidyi(x).

The characteristic values eµi , i = 1, 2 are the eigenvalues of the fundamental matrix Φ(d), where
Φ(0) = id. Notice that the Wronskian W (x) := det Φ(x) satisfies W ′(x) = tr(A(x))W (x) = 0.
Hence the Wranskian W (x) ≡ 1. In other words, eµ1deµ2d = 1. We get

µ1 + µ2 = 0.

We may express
µ1 = ik, µ2 = −ik

for some complex number k.
In terms of u, we get

u(x + d) = e±ikdu(x),

If we express u(x) = e±ikxφ(x, k), then φ(·, k) is a d-periodic function.
We are interested in those bounded solutions. These correspond to those k which are real. Notice

that we can just consider the class
u(x) = eikxφ(x, k)

with k ∈ [0, 2π/d]. This is because

ei(k+2nπ/d)x = eikxe2nπx/d

The last term is a d-periodic function which can be embeded into φ. Thus, for those k not in [0, 2π/d]
(including negative k’s), we can always shift it into [0, 2π/d].

To conclude, all bounded solutions of (2) can be expressed as

u(x) = eikxφ(x, k)

for some k ∈ [0, 2π/d] and φ(·, k) is a d-periodic function.
Notice that the function φ(·, k) satisfies

(∂x + ik)[p(x)(∂x + ik)φ] + q(x)φ = 0.

We denote this operator by Ak, called the shift cell operator. This operator with periodic boundary
condition is self-adjoint. Thus, its eigenvalues are real and its engenvectors {φm(·, k)}∞m=0 constitute
an orthonormal basis in L2

p[0, d], the space of all square summable periodic functions.
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3 Project 1: Wave motion on a periodic structure

Consider a string which is made of two materials periodically. The period is d. The governing
equation for the string is

ρ(x)utt = (T (x)ux)x, x ∈ R

where the density ρ(x) and the tension T (x) are d-periodic functions and piecewise constants in a
period:

ρ(x) =
{

ρ1 0 < x < a
ρ2 a < x < d

T (x) =
{

T1 0 < x < a
T2 a < x < d

The natural interface condition at x = a is

[u]a = 0, [Tux]a = 0. (3)

Here [u]a := u(a+)− u(a−).
We look for solution of the form: u(x, t) = eiωtu(x). This reduces the problem to the follwing

eigenvalue problem:
(Tu(x)′)′ = −ω2ρ(x)u(x).

At the interfaces, the above interface conditions (3) should be satisfied. Since the physical domain
is periodic, we look for bounded solutions. According to Floquet theory, those bounded solutions
have the form:

u(x + d) = eikdu(x). (4)

We thus impose this Bloch boundary condition and the problem is reduced to an eigenvalue problem
on [0, d].
Project goal: This project is to find all eigenvalues ωm(k) and eigenvectors um(x, k) explicitly, or
equivalently, φm(x, k), which is a periodic function and is defined as um(x, k)e−ikx. If possible, you
may plot the functions ωm(k) and um(x, k) for m = 0, 1, 2, 3.
Remarks. The remarks below help you to study this problem further. It is optional to write
anything about these remarks.

1. The shift cell operator Ak is self-adjoint. Its eigenfunctions φm(·, k) constitutes an orthonormal
basis for all periodic functions on [0, d].

2. Any nice function on R can be expanded as

f(x) =
∑
m

d

2π

∫ 2π/d

0

f̂m(k)eikxφm(x, k) dk

where
f̂m(k) =

∫ ∞

−∞
f(x)e−ikxφm(x, k) dx.

Further, we have the following Parseval equality:∫ ∞

−∞
|f(x)|2 dx =

d

2π

∫ 2π/d

0

|f̂m(k)|2 dk

3. The general solutions can be expressed as

u(x, t) =
∑
m

d

2π

∫ 2π/d

0

(am(k)e−iωm(k)t + bm(k)eiωm(k)t)eikxφm(x, k) dk (5)

where the coefficients can be determined from the initial data

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R.
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